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MACHINE LEARNING 
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Prerequisites: 

1. Data Structures 

2. Knowledge on statistical methods 

 
Course Objectives: 

 This course explains machine learning techniques such as decision tree learning, Bayesian 

learning etc. 

 To understand computational learning theory. 

 To study the pattern comparison techniques. 

 
Course Outcomes: 

 Understand the concepts of computational intelligence like machine learning 

 Ability to get the skill to apply machine learning techniques to address the real time problems 

in different areas 

 Understand the Neural Networks and its usage in machine learning application. 

 
UNIT - I 

Introduction - Well-posed learning problems, designing a learning system, Perspectives and issues in 

machine learning 

Concept learning and the general to specific ordering – introduction, a concept learning task, concept 

learning as search, find-S: finding a maximally specific hypothesis, version spaces and the candidate 

elimination algorithm, remarks on version spaces and candidate elimination, inductive bias. 

Decision Tree Learning – Introduction, decision tree representation, appropriate problems for decision 

tree learning, the basic decision tree learning algorithm, hypothesis space search in decision tree 

learning, inductive bias in decision tree learning, issues in decision tree learning. 

 
UNIT - II 

Artificial Neural Networks-1– Introduction, neural network representation, appropriate problems for 

neural network learning, perceptions, multilayer networks and the back-propagation algorithm. 

Artificial Neural Networks-2- Remarks on the Back-Propagation algorithm, An illustrative example: 

face recognition, advanced topics in artificial neural networks. 

Evaluation Hypotheses – Motivation, estimation hypothesis accuracy, basics of sampling theory, a 

general approach for deriving confidence intervals, difference in error of two hypotheses, comparing 

learning algorithms. 

 
UNIT - III 

Bayesian learning – Introduction, Bayes theorem, Bayes theorem and concept learning, Maximum 

Likelihood and least squared error hypotheses, maximum likelihood hypotheses for predicting 

probabilities, minimum description length principle, Bayes optimal classifier, Gibs algorithm, Naïve 

Bayes classifier, an example: learning to classify text, Bayesian belief networks, the EM algorithm. 

Computational learning theory – Introduction, probably learning an approximately correct hypothesis, 

sample complexity for finite hypothesis space, sample complexity for infinite hypothesis spaces, the 
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mistake bound model of learning. 

Instance-Based Learning- Introduction, k-nearest neighbour algorithm, locally weighted regression, 

radial basis functions, case-based reasoning, remarks on lazy and eager learning. 

 
UNIT- IV 

Genetic Algorithms – Motivation, Genetic algorithms, an illustrative example, hypothesis space 

search, genetic programming, models of evolution and learning, parallelizing genetic algorithms. 
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Learning Sets of Rules – Introduction, sequential covering algorithms, learning rule sets: summary, 

learning First-Order rules, learning sets of First-Order rules: FOIL, Induction as inverted deduction, 

inverting resolution. 

Reinforcement Learning – Introduction, the learning task, Q–learning, non-deterministic, rewards and 

actions, temporal difference learning, generalizing from examples, relationship to dynamic 

programming. 

 
UNIT - V 

Analytical Learning-1- Introduction, learning with perfect domain theories: PROLOG-EBG, remarks 

on explanation-based learning, explanation-based learning of search control knowledge. 

Analytical Learning-2-Using prior knowledge to alter the search objective, using prior knowledge to 

augment search operators. 

Combining Inductive and Analytical Learning – Motivation, inductive-analytical approaches to 

learning, using prior knowledge to initialize the hypothesis. 

 
TEXT BOOK: 

1. Machine Learning – Tom M. Mitchell, - MGH 

 
REFERENCE BOOK: 

2. Machine Learning: An Algorithmic Perspective, Stephen Marshland, Taylor & Francis. 
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INTRODUCTION 

 
Computer machinery and intelligence: 

o 1950: In 1950, Alan Turing published a seminal paper, "Computer Machinery and Intelligence," 

on the topic of artificial intelligence. In his paper, he asked, "Can machines think?" 

Machine intelligence in Games: 

o 1952: Arthur Samuel, who was the pioneer of machine learning, created a program that helped an 

IBM computer to play a checkers game. It performed better more it played. 

         1959: In 1959, the term "Machine Learning" was first coined by Arthur Samuel.  

 

The term Machine Learning was coined by Arthur Samuel in 1959, an American pioneer in the field of 

computer gaming and artificial intelligence, and stated that it gives computers the ability to learn 

without being explicitly programmed  

 

 

.  

Ever since computers were invented, we have wondered whether they might be made to learn. 
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If we could understand how to program them to learn-to improve automatically with 

experience-the impact would be dramatic. 

 Imagine computers learning from medical records which treatments are most effective 

for new diseases 

 Houses learning from experience to optimize energy costs based on the particular usage 

patterns of their occupants. 

 Personal software assistants learning the evolving interests of their users in order to 

highlight especially relevant stories from the online morning newspaper 

 
A successful understanding of how to make computers learn would open up many new uses 

of computers and new levels of competence and customization 

 
Some successful applications of machine learning 

 Learning to recognize spoken words 

 Learning to drive an autonomous vehicle 

 Learning to classify new astronomical structures 

 Learning to play world-class backgammon 

 
Why is Machine Learning Important? 

 Some tasks cannot be defined well, except by examples (e.g., recognizing people). 

 Relationships and correlations can be hidden within large amounts of data. Machine 

Learning/Data Mining may be able to find these relationships. 

 Human designers often produce machines that do not work as well as desired in the 

environments in which they are used. 

 The amount of knowledge available about certain tasks might be too large for explicit 

encoding by humans (e.g., medical diagnostic). 

 Environments change over time. 

 New knowledge about tasks is constantly being discovered by humans. It may be 

difficult to continuously re-design systems “by hand”. 

Classification of Machine Learning 

machine learning can be classified into three types: 

1. Supervised learning 

2. Unsupervised learning 

3. Reinforcement learning 

1. Supervised Learning  

Supervised learning is a type of machine learning method in which we provide sample labeled data   to 

the machine learning system in order to train it, and on that basis, it predicts the output. 
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The system creates a model using labeled data to understand the datasets and learn about each data, once 

the training and processing are done then we test the model by providing a sample data to check whether 

it is predicting the exact output or not. 

The goal of supervised learning is to map input data with the output data. The supervised learning is 

based on supervision, and it is the same as when a student learns things in the supervision of the teacher. 

The example of supervised learning 

Supervised learning, as the name indicates, has the presence of a supervisor as a teacher. Basically 

supervised learning is when we teach or train the machine using data that is well labeled. Which means 

some data is already tagged with the correct answer. After that, the machine is provided with a new set of 

examples(data) so that the supervised learning algorithm analyses the training data(set of training 

examples) and produces a correct outcome from labeled data.  

For instance, suppose you are given a basket filled with different kinds of fruits. Now the first step is to 

train the machine with all different fruits one by one like this:  

 If the shape of the object is rounded and has a depression at the top, is red in color, then it will be 

labeled as –Apple. 

 If the shape of the object is a long curving cylinder having Green-Yellow color, then it will be labeled as 

–Banana.  

  

Now suppose after training the data, you have given a new separate fruit, say Banana from the basket, 

and asked to identify it.  

 Since the machine has already learned the things from previous data and this time has to use it wisely. It 

will first classify the fruit with its shape and color and would confirm the fruit name as BANANA and put it 

in the Banana category. Thus the machine learns the things from training data(basket containing fruits) 

and then applies the knowledge to test data(new fruit).  

Supervised learning is classified into two categories of algorithms:  

  

 Classification: A classification problem is when the output variable is a category, such as “Red” or 

“blue” or “disease” and “no disease”. 

 Regression: A regression problem is when the output variable is a real value, such as “dollars” or 

“weight”. 

Supervised learning deals with or learns with “labeled” data. This implies that some data is already tagged 

with the correct answer. 

2) Unsupervised Learning 

Unsupervised learning is a learning method in which a machine learns without any supervision. 
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The training is provided to the machine with the set of data that has not been labeled, classified, or 

categorized, and the algorithm needs to act on that data without any supervision. In unsupervised 

learning, we don't have a predetermined result.  

 

when an algorithm learns from plain examples without any associated response, leaving to the 

algorithm to determine the data patterns on its own. This type of algorithm tends to restructure the data 

into something else, such as new features that may represent a class or a new series of un-correlated 

values.  

It can be further classifieds into two categories of algorithms 

o Clustering 

o Association 

Structure the input data into new features or a group of objects with similar patterns 

Reinforcement learning: When you present the algorithm with examples that lack labels, as in 

unsupervised learning. However, you can accompany an example with positive or negative feedback 

according to the solution the algorithm proposes comes under the category of Reinforcement learning,  

which is connected to applications for which the algorithm must make decisions (so the product is 

prescriptive, not just descriptive, as in unsupervised learning), and the decisions bear consequences. In 

the human world, it is just like learning by trial and error.  

Errors help you learn because they have a penalty added (cost, loss of time, regret, pain, and so on), 

teaching you that a certain course of action is less likely to succeed than others. An interesting 

example of reinforcement learning occurs when computers learn to play video games by themselves.  

Reinforcement learning is a feedback-based learning method, in which a learning agent gets a reward for 

each right action and gets a penalty for each wrong action. The agent learns automatically with these 

feedbacks and improves its performance 

Terminologies of Machine Learning 

 Model 

A model is a specific representation learned from data by applying some machine learning 

algorithm. A model is also called hypothesis. 
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 Feature 

A feature is an individual measurable property of our data. A set of numeric features can be 

conveniently described by a feature vector. Feature vectors are fed as input to the model. For 

example, in order to predict a fruit, there may be features like color, smell, taste,  etc. 

Note: Choosing informative, discriminating and independent features is a crucial step for effective 

algorithms. We generally employ a feature extractor to extract the relevant features from the raw 

data. 

 Target (Label) 

A target variable or label is the value to be predicted by our model. For the fruit example discussed 

in the features section, the label with each set of input would be the name of the fruit like apple, 

orange, banana, etc. 

 Training 

The idea is to give a set of inputs(features) and it’s expected outputs(labels), so after training, we 

will have a model (hypothesis) that will then map new data to one of the categories trained on.  

 Prediction 

Once our model is ready, it can be fed a set of inputs to which it will provide a predicted 

output(label). 

 

 

Basic Difference in ML and Traditional Programming? 

 Traditional Programming : We feed in DATA (Input) + PROGRAM (logic), run it on machine 

and get output. 

 Machine Learning : We feed in DATA(Input) + Output, run it on machine during training and the 

machine creates its own program(logic), which can be evaluated while testing. 
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 In 1997, Tom Mitchell gave a “well-posed” mathematical and relational definition that “A computer 

program is said to learn from experience E with respect to some task T and some performance measure 

P, if its performance on T, as measured by P, improves with experience E.  

WELL-POSED LEARNING PROBLEMS 

 
Definition: A computer program is said to learn from experience E with respect to some class 

of tasks T and performance measure P, if its performance at tasks in T, as measured by P, 

improves with experience E. 

    Example: playing checkers. 

    E = the experience of playing many games of checkers 

    T = the task of playing checkers. 

    P = the probability that the program will win the next game 

 
 

To have a well-defined learning problem, three features needs to be identified: 

1. The class of tasks 

2. The measure of performance to be improved 

3. The source of experience 

 

Examples 

1. Checkers game: A computer program that learns to play checkers might improve its 

performance as measured by its ability to win at the class of tasks involving playing 

checkers games, through experience obtained by playing games against itself. 

 

Fig: Checker game board 

A checkers learning problem: 

 Task T: playing checkers 

 Performance measure P: percent of games won against opponents 

 Training experience E: playing practice games against itself 

 
2. A handwriting recognition learning problem: 

 Task T: recognizing and classifying handwritten words within images 

 Performance measure P: percent of words correctly classified 

 Training experience E: a database of handwritten words with given 
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classifications 

3. A robot driving learning problem: 

 Task T: driving on public four-lane highways using vision sensors 

 Performance measure P: average distance travelled before an error. 

 Training experience E: a sequence of images and steering commands recorded 

while observing a human driver 
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DESIGNING A LEARNING SYSTEM 
The basic design issues and approaches to machine learning are illustrated by designing a 

program to learn to play checkers, with the goal of entering it in the world checkers 

tournament 

1. Choosing the Training Experience 

2. Choosing the Target Function 

3. Choosing a Representation for the Target Function 

4. Choosing a Function Approximation Algorithm 

1. Estimating training values 

2. Adjusting the weights 

5. The Final Design 

 
1. Choosing the Training Experience 

 
 The first design choice is to choose the type of training experience from which the 

system will learn. 

 The type of training experience available can have a significant impact on success or 

failure of the learner. 

 
There are three attributes which impact on success or failure of the learner 

 

1. Whether the training experience provides direct or indirect feedback regarding the 

choices made by the performance system. 

 
For example, in checkers game: 

In learning to play checkers, the system might learn from direct training examples 

consisting of individual checkers board states and the correct move for each. 

 
Indirect training examples consisting of the move sequences and final outcomes of 

various games played. The information about the correctness of specific moves early in 

the game must be inferred indirectly from the fact that the game was eventually won or 

lost. 

 
Here the learner faces an additional problem of credit assignment, or determining the 

degree to which each move in the sequence deserves credit or blame for the final 

outcome. Credit assignment can be a particularly difficult problem because the game 

can be lost even when early moves are optimal, if these are followed later by poor 

moves. 

Hence, learning from direct training feedback is typically easier than learning from 

indirect feedback. 
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2. The degree to which the learner controls the sequence of training examples 

 
For example, in checkers game: 

The learner might depends on the teacher to select informative board states and to 

provide the correct move for each. 

 
Alternatively, the learner might itself propose board states that it finds particularly 

confusing and ask the teacher for the correct move. 

 
The learner may have complete control over both the board states and (indirect) training 

classifications, as it does when it learns by playing against itself with no teacher present. 

 
3. How well it represents the distribution of examples over which the final system 

performance P must be measured 

 
For example, in checkers game: 

In checkers learning scenario, the performance metric P is the percent of games the 

system wins in the world tournament. 

 
If its training experience E consists only of games played against itself, there is a danger 

that this training experience might not be fully representative of the distribution of 

situations over which it will later be tested. 

It is necessary to learn from a distribution of examples that is different from those on 

which the final system will be evaluated. 

2. Choosing the Target Function 

 
The next design choice is to determine exactly what type of knowledge will be learned and 

how this will be used by the performance program. 

 
Let’s consider a checkers-playing program that can generate the legal moves from any board 

state. 

The program needs only to learn how to choose the best move from among these legal moves. 

We must learn to choose among the legal moves, the most obvious choice for the type of 

information to be learned is a program, or function, that chooses the best move for any given 

board state. 

 
1. Let ChooseMove be the target function and the notation is 

 
ChooseMove : B→ M 

which indicate that this function accepts as input any board from the set of legal board 

states B and produces as output some move from the set of legal moves M. 
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ChooseMove is a choice for the target function in checkers example, but this function 

will turn out to be very difficult to learn given the kind of indirect training experience 

available to our system 

 
2. An alternative target function is an evaluation function that assigns a numerical score 

to any given board state 

Let the target function V and the notation 

V : B   → R 

 
which denote that V maps any legal board state from the set B to some real value. 

Intend for this target function V to assign higher scores to better board states. If the 

system can successfully learn such a target function V, then it can easily use it to select 

the best move from any current board position. 

 
Let us define the target value V(b) for an arbitrary board state b in B, as follows: 

 If b is a final board state that is won, then V(b) = 100 

 If b is a final board state that is lost, then V(b) = -100 

 If b is a final board state that is drawn, then V(b) = 0 

 

3. Choosing a Representation for the Target Function 

 
Let’s choose a simple representation - for any given board state, the function c will be 

calculated as a linear combination of the following board features: 

 
 xl: the number of black pieces on the board 

 x2: the number of red pieces on the board 

 x3: the number of black kings on the board 

 x4: the number of red kings on the board 

 x5: the number of black pieces threatened by red (i.e., which can be captured on red's 

next turn) 

 x6: the number of red pieces threatened by black 

 
Thus, learning program will represent as a linear function of the form 
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Where, 

 w0 through w6 are numerical coefficients, or weights, to be chosen by the learning 

algorithm. 

 Learned values for the weights w1 through w6 will determine the relative importance 

of the various board features in determining the value of the board 

 The weight w0 will provide an additive constant to the board value 

 
4. Choosing a Function Approximation Algorithm 

 
In order to learn the target function f we require a set of training examples, each describing a 

specific board state b and the training value Vtrain(b) for b. 

 
Each training example is an ordered pair of the form (b, Vtrain(b)). 

 
For instance, the following training example describes a board state b in which black has won 

the game (note x2 = 0 indicates that red has no remaining pieces) and for which the target 

function value Vtrain(b) is therefore +100. 

 
((x1=3, x2=0, x3=1, x4=0, x5=0, x6=0), +100) 

 
Function Approximation Procedure 

 

1. Derive training examples from the indirect training experience available to the learner 

2. Adjusts the weights wi to best fit these training examples 

 
1. Estimating training values 

 

A simple approach for estimating training values for intermediate board states is to 

assign the  training  value  of  Vtrain(b)  for  any  intermediate  board  state  b  to  be  
   (Successor(b)) 

 
Where , 

    is the learner's current approximation to V 

 Successor(b) denotes the next board state following b for which it is again the 

program's turn to move 

 
Rule for estimating training values 

 
Vtrain         (Successor(b)) 
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2. Adjusting the weights 

Specify the learning algorithm for choosing the weights wi to best fit the set of training 

examples {(b, Vtrain(b))} 

A first step is to define what we mean by the bestfit to the training data. 

One common approach is to define the best hypothesis, or set of weights, as that which 

minimizes the squared error E between the training values and the values predicted by 

the hypothesis. 
 

Several algorithms are known for finding weights of a linear function that minimize E. 

One such algorithm is called the least mean squares, or LMS training rule. For each 

observed training example it adjusts the weights a small amount in the direction that 

reduces the error on this training example 

 

LMS weight update rule :- For each training example (b, Vtrain(b)) 
 se the current weights to calculate    (b) 

For each weight wi, update it as 

 
wi ← wi + ƞ ( train (b) -    (b)) xi 

 
Here ƞ is a small constant (e.g., 0.1) that moderates the size of the weight update. 

Working of weight update rule 

 When the error (Vtrain(b)-    (b)) is zero, no weights are changed. 

 When (Vtrain(b) -       (b)) is positive (i.e., when       (b) is too low), then each  weight is 

increased in proportion to the value of its corresponding feature. This will raise 

the value of    (b), reducing the error. 

 If the value of some feature xi is zero, then its weight is not altered regardless of 

the error, so that the only weights updated are those whose features actually occur 

on the training example board. 
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5. The Final Design 

The final design of checkers learning system can be described by four distinct program modules 

that represent the central components in many learning systems 
 

 

 

 
1. The Performance System is the module that must solve the given performance task by 

using the learned target function(s). It takes an instance of a new problem (new game) 

as input and produces a trace of its solution (game history) as output. 

 
2. The Critic takes as input the history or trace of the game and produces as output a set 

of training examples of the target function 

 
3. The Generalizer takes as input the training examples and produces an output 

hypothesis that is its estimate of the target function. It generalizes from the specific 

training examples, hypothesizing a general function that covers these examples and 

other cases beyond the training examples. 

 
4. The Experiment Generator takes as input the current hypothesis and outputs a new 

problem (i.e., initial board state) for the Performance System to explore. Its role is to 

pick new practice problems that will maximize the learning rate of the overall system. 
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PERSPECTIVES AND ISSUES IN MACHINE LEARNING 

 
Issues in Machine Learning 

The field of machine learning, and much of this book, is concerned with answering questions 

such as the following 

 What algorithms exist for learning general target functions from specific training 

examples? In what settings will particular algorithms converge to the desired function, 

given sufficient training data? Which algorithms perform best for which types of 

problems and representations? 

 How much training data is sufficient? What general bounds can be found to relate the 

confidence in learned hypotheses to the amount of training experience and the character 

of the learner's hypothesis space? 

 When and how can prior knowledge held by the learner guide the process of generalizing 

from examples? Can prior knowledge be helpful even when it is only approximately 

correct? 

 What is the best strategy for choosing a useful next training experience, and how does 

the choice of this strategy alter the complexity of the learning problem? 

 What is the best way to reduce the learning task to one or more function approximation 

problems? Put another way, what specific functions should the system attempt to learn? 

Can this process itself be automated? 

 How can the learner automatically alter its representation to improve its ability to 

represent and learn the target function? 

 

Issues in Machine Learning 

Although machine learning is being used in every industry and helps organizations make more informed 

and data-driven choices that are more effective than classical methodologies, it still has so many 

problems that cannot be ignored. Here are some common issues in Machine Learning that professionals 

face to inculcate ML skills and create an application from scratch. 

1. Inadequate Training Data 

The major issue that comes while using machine learning algorithms is the lack of quality as well as 

quantity of data. Although data plays a vital role in the processing of machine learning algorithms, many 

data scientists claim that inadequate data, noisy data, and unclean data are extremely exhausting the 

machine learning algorithms. For example, a simple task requires thousands of sample data, and an 

advanced task such as speech or image recognition needs millions of sample data examples. Further, 
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data quality is also important for the algorithms to work ideally, but the absence of data quality is also 

found in Machine Learning applications. Data quality can be affected by some factors as follows: 

o Noisy Data- It is responsible for an inaccurate prediction that affects the decision as well as 

accuracy in classification tasks. 

o Incorrect data- It is also responsible for faulty programming and results obtained in machine 

learning models. Hence, incorrect data may affect the accuracy of the results also. 

o Generalizing of output data- Sometimes, it is also found that generalizing output data becomes 

complex, which results in comparatively poor future actions. 

2. Poor quality of data 

As we have discussed above, data plays a significant role in machine learning, and it must be of good 

quality as well. Noisy data, incomplete data, inaccurate data, and unclean data lead to less accuracy in 

classification and low-quality results. Hence, data quality can also be considered as a major common 

problem while processing machine learning algorithms. 

3. Non-representative training data 

To make sure our training model is generalized well or not, we have to ensure that sample training data 

must be representative of new cases that we need to generalize. The training data must cover all cases 

that are already occurred as well as occurring. 

Further, if we are using non-representative training data in the model, it results in less accurate 

predictions. A machine learning model is said to be ideal if it predicts well for generalized cases and 

provides accurate decisions. If there is less training data, then there will be a sampling noise in the 

model, called the non-representative training set. It won't be accurate in predictions. To overcome this, it 

will be biased against one class or a group. 

Hence, we should use representative data in training to protect against being biased and make accurate 

predictions without any drift. 

4. Overfitting and Underfitting 

 

Overfitting is one of the most common issues faced by Machine Learning engineers and data scientists. 

Whenever a machine learning model is trained with a huge amount of data, it starts capturing noise and 

inaccurate data into the training data set. It negatively affects the performance of the model. Let's 
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understand with a simple example where we have a few training data sets such as 1000 mangoes, 1000 

apples, 1000 bananas, and 5000 papayas. Then there is a considerable probability of identification of an 

apple as papaya because we have a massive amount of biased data in the training data set; hence 

prediction got negatively affected. 

Underfitting: 

Under fitting is just the opposite of over fitting. Whenever a machine learning model is trained with fewer amounts 

of data, and as a result, it provides incomplete and inaccurate data and destroys the accuracy of the machine 

learning model. Under fitting occurs when our model is too simple to understand the base structure of the data, is 

less in quantity. 

5. Monitoring and maintenance 

As we know that generalized output data is mandatory for any machine learning model; hence, regular 

monitoring and maintenance become compulsory for the same. Different results for different actions 

require data change; hence editing of codes as well as resources for monitoring them also become 

necessary. 

6. Getting bad recommendations 

A machine learning model operates under a specific context which results in bad recommendations and 

concept drift in the model. Let's understand with an example where at a specific time customer is looking 

for some gadgets, but now customer requirement changed over time but still machine learning model 

showing same recommendations to the customer while customer expectation has been changed. This 

incident is called a Data Drift. It generally occurs when new data is introduced or interpretation of data 

changes. However, we can overcome this by regularly updating and monitoring data according to the 

expectations. 

7. Lack of skilled resources 

Although Machine Learning and Artificial Intelligence are continuously growing in the market, still 

these industries are fresher in comparison to others. The absence of skilled resources in the form of 

manpower is also an issue. Hence, we need manpower having in-depth knowledge of mathematics, 

science, and technologies for developing and managing scientific substances for machine learning. 

8. Customer Segmentation 
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Customer segmentation is also an important issue while developing a machine learning algorithm. To 

identify the customers who paid for the recommendations shown by the model and who don't even check 

them. Hence, an algorithm is necessary to recognize the customer behavior and trigger a relevant 

recommendation for the user based on past experience. 

9. Process Complexity of Machine Learning 

The machine learning process is very complex, which is also another major issue faced by machine 

learning engineers and data scientists. However, Machine Learning and Artificial Intelligence are very 

new technologies but are still in an experimental phase and continuously being changing over time. 

There is the majority of hits and trial experiments; hence the probability of error is higher than expected. 

Further, it also includes analyzing the data, removing data bias, training data, applying complex 

mathematical calculations, etc., making the procedure more complicated and quite tedious. 

10. Data Bias 

Data Biasing is also found a big challenge in Machine Learning. These errors exist when certain 

elements of the dataset are heavily weighted or need more importance than others. Biased data leads to 

inaccurate results, skewed outcomes, and other analytical errors. However, we can resolve this error by 

determining where data is actually biased in the dataset. Further, take necessary steps to reduce it. 

11. Lack of Explainability 

This basically means the outputs cannot be easily comprehended as it is programmed in specific ways to 

deliver for certain conditions. Hence, a lack of explainability is also found in machine learning 

algorithms which reduce the credibility of the algorithms. 

12. Slow implementations and results 

This issue is also very commonly seen in machine learning models. However, machine learning models 

are highly efficient in producing accurate results but are time-consuming. Slow programming, excessive 

requirements' and overloaded data take more time to provide accurate results than expected. This needs 

continuous maintenance and monitoring of the model for delivering accurate results. 

13. Irrelevant features 

Although machine learning models are intended to give the best possible outcome, if we feed garbage 

data as input, then the result will also be garbage. Hence, we should use relevant features in our training 
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sample. A machine learning model is said to be good if training data has a good set of features or less to 

no irrelevant features. 

CONCEPT LEARNING 

 
 Learning involves acquiring general concepts from specific training examples. Example: 

People continually learn general concepts or categories such as "bird," "car," "situations in 

which I should study more in order to pass the exam," etc. 

 Each such concept can be viewed as describing some subset of objects or events defined 

over a larger set 

 Alternatively, each concept can be thought of as a Boolean-valued function defined over this 

larger set. (Example: A function defined over all animals, whose value is true for birds and 

false for other animals). 

 
Definition: Concept learning - Inferring a Boolean-valued function from training examples of 

its input and output 

 
A CONCEPT LEARNING TASK 

 
Consider the example task of learning the target concept "Days on which Aldo enjoys 

his favorite water sport” 

 

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport 

1 Sunny Warm Normal Strong Warm Same Yes 

2 Sunny Warm High Strong Warm Same Yes 

3 Rainy Cold High Strong Warm Change No 

4 Sunny Warm High Strong Cool Change Yes 

Table: Positive and negative training examples for the target concept EnjoySport. 

 
The task is to learn to predict the value of EnjoySport for an arbitrary day, based on the 

values of its other attributes? 

 

 
What hypothesis representation is provided to the learner? 

 
 Let’s consider a simple representation in which each hypothesis consists of a 

conjunction of constraints on the instance attributes. 

 Let each hypothesis be a vector of six constraints, specifying the values of the six 
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attributes Sky, AirTemp, Humidity, Wind, Water, and Forecast. 
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For each attribute, the hypothesis will either 

 Indicate by a "?' that any value is acceptable for this attribute, 

 Specify a single required value (e.g., Warm) for the attribute, or 

 Indicate by a "Φ" that no value is acceptable 

 
If some instance x satisfies all the constraints of hypothesis h, then h classifies x as a positive 

example (h(x) = 1). 

 
The hypothesis that PERSON enjoys his favorite sport only on cold days with high humidity 

is represented by the expression 

(?, Cold, High, ?, ?, ?) 

 
The most general hypothesis-that every day is a positive example-is represented by 

(?, ?, ?, ?, ?, ?) 

 
The most specific possible hypothesis-that no day is a positive example-is represented by 

(Φ, Φ, Φ, Φ, Φ, Φ) 

 
Notation 

 

 The set of items over which the concept is defined is called the set of instances, which is 

denoted by X. 

 
Example: X is the set of all possible days, each represented by the attributes: Sky, AirTemp, 

Humidity, Wind, Water, and Forecast 

 
 The concept or function to be learned is called the target concept, which is denoted by c. 

c can be any Boolean valued function defined over the instances X 

 
c: X→ {O, 1} 

 
Example: The target concept corresponds to the value of the attribute EnjoySport 

(i.e., c(x) = 1 if EnjoySport = Yes, and c(x) = 0 if EnjoySport = No). 

 
 Instances for which c(x) = 1 are called positive examples, or members of the target concept. 

 Instances for which c(x) = 0 are called negative examples, or non-members of the target 

concept. 

 The ordered pair (x, c(x)) to describe the training example consisting of the instance x and 

its target concept value c(x). 
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 D to denote the set of available training examples 
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 The symbol H to denote the set of all possible hypotheses that the learner may consider 

regarding the identity of the target concept. Each hypothesis h in H represents a Boolean- 

valued function defined over X 

h: X→{O, 1} 

 
The goal of the learner is to find a hypothesis h such that h(x) = c(x) for all x in X. 

 

 
 

 Given: 

 Instances X: Possible days, each described by the attributes 

 Sky (with possible values Sunny, Cloudy, and Rainy), 

 AirTemp (with values Warm and Cold), 

 Humidity (with values Normal and High), 

 Wind (with values Strong and Weak), 

 Water (with values Warm and Cool), 

 Forecast (with values Same and Change). 

 
 Hypotheses H: Each hypothesis is described by a conjunction of constraints on the 

attributes Sky, AirTemp, Humidity, Wind, Water, and Forecast. The constraints may be 

"?" (any value is acceptable), “Φ” (no value is acceptable), or a specific value. 

 

 Target concept c: EnjoySport : X → {0, l} 

 Training examples D: Positive and negative examples of the target function 

 
 Determine: 

 A hypothesis h in H such that h(x) = c(x) for all x in X. 

 
 

Table: The EnjoySport concept learning task. 

 

 
The inductive learning hypothesis 

 

Any hypothesis found to approximate the target function well over a sufficiently large set of 

training examples will also approximate the target function well over other unobserved 

examples. 
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CONCEPT LEARNING AS SEARCH 

 
 Concept learning can be viewed as the task of searching through a large space of 

hypotheses implicitly defined by the hypothesis representation. 

 The goal of this search is to find the hypothesis that best fits the training examples. 

 
Example: 

Consider the instances X and hypotheses H in the EnjoySport learning task. The attribute Sky 

has three possible values, and AirTemp, Humidity, Wind, Water, Forecast each have two 

possible values, the instance space X contains exactly 

3.2.2.2.2.2 = 96 distinct instances    v 

 

5.4.4.4.4.4 = 5120  distinct hypotheses within H.(specific and general ) 

 

                 1 + (4.3.3.3.3.3) = 973. Semantically distinct hypotheses(only  general +1 specific) 

 
FIND-S: FINDING A MAXIMALLY SPECIFIC HYPOTHESIS 

 

 FIND-S Algorithm 
 

1. Initialize h to the most specific hypothesis in H 

2. For each positive training instance x 

For each attribute constraint a
i 
in h 

If the constraint a
i 
is satisfied by x 

Then do nothing 

Else replace a
i 
in h by the next more general constraint that is satisfied by x 

3. Output hypothesis h 

 

To illustrate this algorithm, assume the learner is given the sequence of training examples 

from the EnjoySport task 
 
 

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport 

1 Sunny Warm Normal Strong Warm Same Yes 

2 Sunny Warm High Strong Warm Same Yes 

3 Rainy Cold High Strong Warm Change No 

4 Sunny Warm High Strong Cool Change Yes 

 

 The first step of FIND-S is to initialize h to the most specific hypothesis in H 
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h - (Ø, Ø, Ø, Ø, Ø, Ø) 

 
 Consider the first training example 

x1 = <Sunny Warm Normal Strong Warm Same>, + 

 
Observing the first training example, it is clear that hypothesis h is too specific. None 

of the "Ø" constraints in h are satisfied by this example, so each is replaced by the next 

more general constraint that fits the example 

h1 = <Sunny Warm Normal Strong Warm Same> 

 
 Consider the second training example 

x2 = <Sunny, Warm, High, Strong, Warm, Same>, + 

 
The second training example forces the algorithm to further generalize h, this time 

substituting a "?" in place of any attribute value in h that is not satisfied by the new 

example 

h2 = <Sunny Warm ? Strong Warm Same> 

 
 Consider the third training example 

x3 = <Rainy, Cold, High, Strong, Warm, Change>, - 

 
Upon encountering the third training the algorithm makes no change to h. The FIND-S 

algorithm simply ignores every negative example. 

h3 = < Sunny Warm ? Strong Warm Same> 

 
 Consider the fourth training example 

x4 = <Sunny Warm High Strong Cool Change>, + 

 
The fourth example leads to a further generalization of h 

h4 = < Sunny Warm ? Strong ? ? > 
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The key property of the FIND-S algorithm 

 FIND-S is guaranteed to output the most specific hypothesis within H that is consistent 

with the positive training examples 

 FIND-S algorithm’s final hypothesis will also be consistent with the negative examples 

provided the correct target concept is contained in H, and provided the training examples 

are correct. 

 
Unanswered by FIND-S 

 

1. Has the learner converged to the correct target concept? 

2. Why prefer the most specific hypothesis? 

3. Are the training examples consistent? 

4. What if there are several maximally specific consistent hypotheses? 

 

Limitations of Find-S Algorithm 
There are a few limitations of the Find-S algorithm listed down below: 

1. There is no way to determine if the hypothesis is consistent throughout the data. 
2. Inconsistent training sets can actually mislead the Find-S algorithm, since it ignores the negative 

examples. 
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VERSION SPACES AND THE CANDIDATE-ELIMINATION ALGORITHM 

 
The key idea in the CANDIDATE-ELIMINATION algorithm is to output a description of the 

set of all hypotheses consistent with the training examples 

 
 Representation 

 

Definition: consistent- A hypothesis h is consistent with a set of training examples D if and 

only if h(x) = c(x) for each example (x, c(x)) in D. 

Consistent (h, D)  ( x, c(x)  D) h(x) = c(x)) 

Note difference between definitions of consistent and satisfies 

 An example x is said to satisfy hypothesis h when h(x) = 1, regardless of whether x is 

a positive or negative example of the target concept. 

 An example x is said to consistent with hypothesis h iff h(x) = c(x) 

 
Definition: version space- The version space, denoted V S with respect to hypothesis space 

H, D 

H and training examples D, is the subset of hypotheses from H consistent with the training 

examples in D 

V S {h  H | Consistent (h, D)} 
H, D 

 

 

A More Compact Representation for Version Spaces 

 

The version space is represented by its most general and least general members. These 

members form general and specific boundary sets that delimit the version space within the 

partially ordered hypothesis space. 

 
Definition: The general boundary G, with respect to hypothesis space H and training data D, 

is the set of maximally general members of H consistent with D 

 
G {g  H | Consistent (g, D)(g'  H)[(g'  g)  Consistent(g', D)]} 

g 

 

Definition: The specific boundary S, with respect to hypothesis space H and training data D, 

is the set of minimally general (i.e., maximally specific) members of H consistent with D. 

 
S {s  H | Consistent (s, D)(s'  H)[(s  s')  Consistent(s', D)]} 

g 
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CANDIDATE-ELIMINATION Learning Algorithm 
 

The CANDIDATE-ELIMINTION algorithm computes the version space containing all 

hypotheses from H that are consistent with an observed sequence of training examples. 
 
 

Initialize G to the set of maximally general hypotheses in H 

Initialize S to the set of maximally specific hypotheses in H 

For each training example d, do 

• If d is a positive example 

• Moves from Specific to general 

• Remove from G any hypothesis inconsistent with d 

• For each hypothesis s in S that is not consistent with d 

• Remove s from S 

• Add to S all minimal generalizations h of s such that 

• h is consistent with d, and some member of G is more general than h 

• Remove from S any hypothesis that is more general than another hypothesis in S 

                      
• If d is a negative example 

• Moves from general to specific 

• Remove from S any hypothesis inconsistent with d 

• For each hypothesis g in G that is not consistent with d 

• Remove g from G 

• Add to G all minimal specializations h of g such that 

• h is consistent with d, and some member of S is more specific than h 

• Remove from G any hypothesis that is less general than another hypothesis in G 
 
 

CANDIDATE- ELIMINTION algorithm using version spaces 

 
An Illustrative Example 

 

 
 

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport 

1 Sunny Warm Normal Strong Warm Same Yes 

2 Sunny Warm High Strong Warm Same Yes 

3 Rainy Cold High Strong Warm Change No 

4 Sunny Warm High Strong Cool Change Yes 
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CANDIDATE-ELIMINTION algorithm begins by initializing the version space to the set of 

all hypotheses in H; 

 
Initializing the G boundary set to contain the most general hypothesis in H 

G0  ?,  ?,  ?,  ?,  ?, ?


Initializing the S boundary set to contain the most specific (least general) hypothesis 

S0  , , , , , 


 When the second training example is observed, it has a similar effect of generalizing S  
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Given that there are six attributes that could be specified to specialize G2, why are there only 

three new hypotheses in G3? 

 

 Consider the fourth training example. 
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 This positive example further generalizes the S boundary of the version space. It also 

results in removing one member of the G boundary, because this member fails to 

cover the new positive example 

 

 
After processing these four examples, the boundary sets S4 and G4 delimit the version space 

of all hypotheses consistent with the set of incrementally observed training examples. 
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INDUCTIVE BIAS: Inductive bias refers to the restrictions that are imposed by the 

assumptions made in the learning method.  

 

The fundamental questions for inductive inference 

 
1. What if the target concept is not contained in the hypothesis space how the output is 

predicted 

2. Can we avoid this difficulty by using a hypothesis space that includes every possible 

hypothesis by making more generalize 

3. How does the size of this hypothesis space influence the ability of the algorithm to 

generalize and make predictions 

4. How does the size of the hypothesis space influence the number of training examples 

that must be observed  and how  given hypothesis is correct prediction 

 
These fundamental questions are examined in the context of the CANDIDATE- 

ELIMINTION algorithm 

 
A Biased Hypothesis Space:   
Which are more Specific- 

Deals only with Postive consistent data 
 

 Suppose the target concept is not contained in the hypothesis space H, then obvious 

solution is to enrich the hypothesis space to include every possible hypothesis. 

 Consider the EnjoySport example in which the hypothesis space is restricted to include 

only conjunctions of attribute values. Because of this restriction, the hypothesis space is 

unable to represent even simple disjunctive target concepts such as 

"Sky = Sunny or Sky = Cloudy." 

 The following three training examples of disjunctive hypothesis, the algorithm would 

find that there are zero hypotheses in the version space 

 
Sunny Warm Normal Strong Cool Change Y 

Cloudy Warm Normal Strong Cool Change Y 

Rainy Warm Normal Strong Cool Change N 

 
 If Candidate Elimination algorithm is applied, then it end up with empty Version Space. 

After first two training example 

S= ? Warm Normal Strong Cool Change


 This new hypothesis is overly general and it incorrectly covers the third negative 

training example. 
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An Unbiased Learner :  

Which are more Generalized  

Have solution for negative inconsistent data 
 

 The solution to the problem of assuring that the target concept is in the hypothesis space H is 

to provide a hypothesis space capable of representing every teachable concept that is 

representing every possible subset of the instances X. 

 The set of all subsets of a set X is called the power set of X 

 
 In the EnjoySport learning task the size of the instance space X of days described by the 

six attributes is 96 instances. 

 Thus, there are 2
96

 distinct target concepts that could be defined over this instance space 

and learner might be called upon to learn. 

 

Example: 

Consider the instances X and hypotheses H in the EnjoySport learning task. The attribute Sky 

has three possible values, and AirTemp, Humidity, Wind, Water, Forecast each have two 

possible values, the instance space X contains exactly 

3.2.2.2.2.2 = 96 distinct instances    v 

 

5.4.4.4.4.4 = 5120  distinct hypotheses within H.(specific and general ) 

 

                 1 + (4.3.3.3.3.3) = 973. Semantically distinct hypotheses(only  general +1 specific) 
 

 

The below figure explains Inductive and deductive system 

 Modelling inductive systems by equivalent deductive systems. 

 The input-output behavior of the CANDIDATE-ELIMINATION algorithm using a 

hypothesis space H is identical to that of a deductive theorem prover utilizing the 

assertion "H contains the target concept." This assertion is therefore called the inductive 

bias of the CANDIDATE-ELIMINATION algorithm. 

 Characterizing inductive systems by their inductive bias allows modelling them by their 

equivalent deductive systems. This provides a way to compare inductive systems 

according to their policies for generalizing beyond the observed training data. 
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An Example for general Mathematic  resdaoning for inductive and deductive system 

 

               Inductive Reasoning: Maximilian is a shelter dog. He is happy. All shelter dogs are happy. 
Deductive Reasoning: Maximillian is a shelter dog. All shelter dogs are happy. 
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DECISION TREE LEARNING 
What is a Decision Tree 

 

• ID3 stands for Iterative Dichotomiser 3 

• ID3 is a precursor to the C4.5 Algorithm. 

• The ID3 algorithm was invented by Ross Quinlan in 1975 

• Used to generate a decision tree from a given data set by employing a top-down, 

greedy search, to test each attribute at every node of the tree. 

• The resulting tree is used to classify future samples. 

 

It is a tool that has applications spanning several different areas. Decision trees can be used for 

classification as well as regression problems. The name itself suggests that it uses a flowchart like a tree 

structure to show the predictions that result from a series of feature-based splits. It starts with a root node 

and ends with a decision made by leaves. 

 
 

 

o Decision Tree is a Supervised learning technique that can be used for both classification and Regression 

problems, but mostly it is preferred for solving Classification problems. It is a tree-structured classifier, 

where internal nodes represent the features of a dataset, branches represent the decision 

rules and each leaf node represents the outcome. 
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o In a Decision tree, there are two nodes, which are the Decision Node and Leaf Node. Decision nodes are 

used to make any decision and have multiple branches, whereas Leaf nodes are the output of those 

decisions and do not contain any further branches. 

o The decisions or the test are performed on the basis of features of the given dataset. 

o It is a graphical representation for getting all the possible solutions to a problem/decision based on 

given conditions. 

o It is called a decision tree because, similar to a tree, it starts with the root node, which expands on further 

branches and constructs a tree-like structure. 

 

o Example: Suppose there is a candidate who has a job offer and wants to decide whether he should accept 

the offer or Not. So, to solve this problem, the decision tree starts with the root node (Salary attribute by 

ASM). The root node splits further into the next decision node (distance from the office) and one leaf node 

based on the corresponding labels. The next decision node further gets split into one decision node (Cab 

facility) and one leaf node. Finally, the decision node splits into two leaf nodes (Accepted offers and Declined 

offer). Consider the below diagram: 

o  

 

 

Decision Tree Terminologies 
  Root Node: Root node is from where the decision tree starts. It represents the entire dataset, which further gets 

divided into two or more homogeneous sets. 

  Leaf Node: Leaf nodes are the final output node, and the tree cannot be segregated further after getting a leaf 

node. 

  Splitting: Splitting is the process of dividing the decision node/root node into sub-nodes according to the given 

conditions. 

  Branch/Sub Tree: A tree formed by splitting the tree. 
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  Pruning: Pruning is the process of removing the unwanted branches from the tree. 

  Parent/Child node: The root node of the tree is called the parent node, and other nodes are called the child 

nodes. 

 

 

 

Entropy: Entropy is a metric to measure the impurity in a given attribute. It specifies randomness in data. Entropy 

can be calculated as: 

Entropy(s)= -P(yes)log2 P(yes)- P(no) log2 P(no) 

Where, 

o S= Total number of samples 

o P(yes)= probability of yes 

o P(no)= probability of no 

 

Attribute Selection Measures 

While implementing a Decision tree, the main issue arises that how to select the best attribute for the root node and 

for sub-nodes. So, to solve such problems there is a technique which is called as Attribute selection measure or 

ASM. By this measurement, we can easily select the best attribute for the nodes of the tree  through  information 

gain 

Information Gain  

INFORMATION GAIN MEASURES THE EXPECTED REDUCTION IN ENTROPY 

 
 Information gain, is the expected reduction in entropy caused by partitioning the 

examples according to this attribute. 

 The information gain, Gain(S, A) of an attribute A, relative to a collection of examples 

S, is defined as 

 

 Information Gain: 

o Information gain is the measurement of changes in entropy after the segmentation of a dataset based on an 

attribute. 

o It calculates how much information a feature provides us about a class. 

o According to the value of information gain, we split the node and build the decision tree. 

o A decision tree algorithm always tries to maximize the value of information gain, and a node/attribute having 

the highest information gain is split first. It can be calculated using the below formula: 
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o Information Gain= Entropy(S)- [(Weighted Avg) *Entropy(each feature)   

Advantages of the Decision Tree 

o It is simple to understand as it follows the same process which a human follow while making any decision in 

real-life. 

o It can be very useful for solving decision-related problems. 

o It helps to think about all the possible outcomes for a problem. 

o There is less requirement of data cleaning compared to other algorithms. 

Disadvantages of the Decision Tree 

o The decision tree contains lots of layers, which makes it complex. 

o It may have an overfitting issue, which can be resolved using the Random Forest algorithm(not in 

syllabus) 

o For more class labels, the computational complexity of the decision tree may increase. 

ENTROPY MEASURES HOMOGENEITY OF EXAMPLES 

 
To define information gain, we begin by defining a measure called entropy. Entropy 

measures the impurity of a collection of examples. 

 
Given a collection S, containing positive and negative examples of some target concept, the 

entropy of S relative to this Boolean classification is 
 

 

 

Where,  
p+ is the proportion of positive examples in S 

p- is the proportion of negative examples in S. 
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Example: 

Suppose S is a collection of 14 examples of some boolean concept, including 9 positive and 5 

negative examples. Then the entropy of S relative to this boolean classification is 
 
 

 

 
 The entropy is 0 if all members of S belong to the same class 

 The entropy is 1 when the collection contains an equal number of positive and negative 

examples 

 If the collection contains unequal numbers of positive and negative examples, the 

entropy is between 0 and 1 

 

DECISION TREE REPRESENTATION 
 

 Decision trees classify instances by sorting them down the tree from the root to some 

leaf node, which provides the classification of the instance. 

 Each node in the tree specifies a test of some attribute of the instance, and each branch 

descending from that node corresponds to one of the possible values for this attribute. 

 An instance is classified by starting at the root node of the tree, testing the attribute 

specified by this node, then moving down the tree branch corresponding to the value of 

the attribute in the given example. This process is then repeated for the subtree rooted 

at the new node. 
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FIGURE: A decision tree for the concept PlayTennis. An example is classified by sorting it 

through the tree to the appropriate leaf node, then returning the classification associated with 

this leaf 

 

 

An Illustrative Example 

 

 To illustrate the operation of ID3, consider the learning task represented by the training 

examples of below table. 

 Here the target attribute PlayTennis, which can have values yes or no for different days. 

 Consider the first step through the algorithm, in which the topmost node of the decision 

tree is created. 
 
 

Day Outlook Temperature Humidity Wind PlayTennis 

D1 Sunny Hot High Weak No 
D2 Sunny Hot High Strong No 
D3 Overcast Hot High Weak Yes 
D4 Rain Mild High Weak Yes 
D5 Rain Cool Normal Weak Yes 
D6 Rain Cool Normal Strong No 
D7 Overcast Cool Normal Strong Yes 
D8 Sunny Mild High Weak No 
D9 Sunny Cool Normal Weak Yes 
D10 Rain Mild Normal Weak Yes 
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D11 Sunny Mild Normal Strong Yes 
D12 Overcast Mild High Strong Yes 
D13 Overcast Hot Normal Weak Yes 
D14 Rain Mild High Strong No 

 

 ID3 determines the information gain for each candidate attribute (i.e., Outlook, 

Temperature, Humidity, and Wind), then selects the one with highest information gain. 
 

 

What are the steps in ID3 algorithm? 

The steps in ID3 algorithm are as follows: 

1. Calculate entropy for dataset. 

2. For each attribute/feature. 

2.1. Calculate entropy for all its categorical values. 

2.2. Calculate information gain for the feature. 

3. Find the feature with maximum information gain. 

4. Repeat it until we get the desired tree. 

 

 

Complete entropy of dataset is: 

H(S) = - p(yes) * log2(p(yes)) - p(no) * log2(p(no)) 

     = - (9/14) * log2(9/14) - (5/14) * log2(5/14) 

     = - (-0.41) - (-0.53) 

     = 0.94 

 

First Attribute – Outlook 

 
Categorical values - sunny, overcast and rain 

H(Outlook=sunny) = -(2/5)*log(2/5)-(3/5)*log(3/5) =0.971 

H(Outlook=rain) = -(3/5)*log(3/5)-(2/5)*log(2/5) =0.971 

H(Outlook=overcast) = -(4/4)*log(4/4)-0 = 0 

 

Average Entropy Information for Outlook -  
I(Outlook) = p(sunny) * H(Outlook=sunny) + p(rain) * H(Outlook=rain) + p(overcast) * 

H(Outlook=overcast) 

= (5/14)*0.971 + (5/14)*0.971 + (4/14)*0 

= 0.693 

 

Information Gain = H(S) - I(Outlook) 
                 = 0.94 - 0.693 

                 = 0.247 

 

 

Second Attribute - Temperature 
Categorical values - hot, mild, cool 

H(Temperature=hot) = -(2/4)*log(2/4)-(2/4)*log(2/4) = 1 

H(Temperature=cool) = -(3/4)*log(3/4)-(1/4)*log(1/4) = 0.811 
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H(Temperature=mild) = -(4/6)*log(4/6)-(2/6)*log(2/6) = 0.9179 

 

 

 

Average Entropy Information for Temperature -  
I(Temperature) = p(hot)*H(Temperature=hot) + p(mild)*H(Temperature=mild) + 

p(cool)*H(Temperature=cool) 

= (4/14)*1 + (6/14)*0.9179 + (4/14)*0.811 

= 0.9108 

 

Information Gain = H(S) - I(Temperature) 
                 = 0.94 - 0.9108 

                 = 0.0292 

 

Third Attribute - Humidity 
Categorical values - high, normal 

H(Humidity=high) = -(3/7)*log(3/7)-(4/7)*log(4/7) = 0.983 

H(Humidity=normal) = -(6/7)*log(6/7)-(1/7)*log(1/7) = 0.591 

 

Average Entropy Information for Humidity -  
I(Humidity) = p(high)*H(Humidity=high) + p(normal)*H(Humidity=normal) 

= (7/14)*0.983 + (7/14)*0.591  

= 0.787 

 

Information Gain = H(S) - I(Humidity) 
                 = 0.94 - 0.787 

                 = 0.153 

 

Fourth Attribute - Wind 
Categorical values - weak, strong 

H(Wind=weak) = -(6/8)*log(6/8)-(2/8)*log(2/8) = 0.811 

H(Wind=strong) = -(3/6)*log(3/6)-(3/6)*log(3/6) = 1 

 

Average Entropy Information for Wind -  
I(Wind) = p(weak)*H(Wind=weak) + p(strong)*H(Wind=strong) 

= (8/14)*0.811 + (6/14)*1  

= 0.892 

 

Information Gain = H(S) - I(Wind) 
                 = 0.94 - 0.892 

                 = 0.048 

 

 

 

Here, the attribute with maximum information gain is Outlook. So, the decision tree built so far - 
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 when Outlook == overcast, it is of pure class(Yes). 
Now, we have to repeat same procedure for the data with rows consist of Outlook value as 

Sunny and then for Outlook value as Rain. The information gain values for all four 

attributes are 

Gain(S, Outlook) = 0.246 

Gain(S, Humidity) = 0.151 

Gain(S, Wind) = 0.048 

Gain(S, Temperature) = 0.029 

 According to the information gain measure, the Outlook attribute provides the best 

prediction of the target attribute, PlayTennis, over the training examples. Therefore, 

Outlook is selected as the decision attribute for the root node, and branches are created 

below the root for each of its possible values i.e., Sunny, Overcast, and Rain. 
 

 

 

 
 
 finding the best attribute for splitting the data with Outlook=Sunny 
 
 

Complete entropy of Sunny is - 
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H(S) = - p(yes) * log2(p(yes)) - p(no) * log2(p(no)) 

     = - (2/5) * log2(2/5) - (3/5) * log2(3/5) 

     = 0.971 

First Attribute - Temperature 

Categorical values - hot, mild, cool 

H(Sunny, Temperature=hot) = -0-(2/2)*log(2/2) = 0 

H(Sunny, Temperature=cool) = -(1)*log(1)- 0 = 0 

H(Sunny, Temperature=mild) = -(1/2)*log(1/2)-(1/2)*log(1/2) = 1 

Average Entropy Information for Temperature -  

I(Sunny, Temperature) = p(Sunny, hot)*H(Sunny, Temperature=hot) + p(Sunny, 

mild)*H(Sunny, Temperature=mild) + p(Sunny, cool)*H(Sunny, Temperature=cool) 

= (2/5)*0 + (1/5)*0 + (2/5)*1 

= 0.4 

 

Information Gain = H(Sunny) - I(Sunny, Temperature) 

                 = 0.971 - 0.4 

                 = 0.571 

Second Attribute - Humidity 

Categorical values - high, normal 

H(Sunny, Humidity=high) = - 0 - (3/3)*log(3/3) = 0 

H(Sunny, Humidity=normal) = -(2/2)*log(2/2)-0 = 0 

 

Average Entropy Information for Humidity -  

I(Sunny, Humidity) = p(Sunny, high)*H(Sunny, Humidity=high) + p(Sunny, 

normal)*H(Sunny, Humidity=normal) 

= (3/5)*0 + (2/5)*0  

= 0 

 

Information Gain = H(Sunny) - I(Sunny, Humidity) 

                 = 0.971 - 0 

                 = 0.971 

Third Attribute – Wind 



50 UNIT 1 ML                                                    Faculty Name:Mrs Swapna 

  

 

Categorical values - weak, strong 

H(Sunny, Wind=weak) = -(1/3)*log(1/3)-(2/3)*log(2/3) = 0.918 

H(Sunny, Wind=strong) = -(1/2)*log(1/2)-(1/2)*log(1/2) = 1 

 

Average Entropy Information for Wind -  

I(Sunny, Wind) = p(Sunny, weak)*H(Sunny, Wind=weak) + p(Sunny, strong)*H(Sunny, Wind=strong) 

= (3/5)*0.918 + (2/5)*1  

= 0.9508 

 

Information Gain = H(Sunny) - I(Sunny, Wind) 

                 = 0.971 - 0.9508 

                 = 0.0202 

Here, the attribute with maximum information gain is Humidity. So, the decision tree built so far - 

 

Here, when Outlook = Sunny and Humidity = High, it is a pure class of category "no". And When 
Outlook = Sunny and Humidity = Normal, it is again a pure class of category "yes". Therefore, we 
don't need to do further calculations. 

 

Complete entropy of Rain is - 

H(S) = - p(yes) * log2(p(yes)) - p(no) * log2(p(no)) 

     = - (3/5) * log(3/5) - (2/5) * log(2/5)  

     = 0.971 

First Attribute - Temperature 
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First Attribute - Temperature 

Categorical values - mild, cool 

H(Rain, Temperature=cool) = -(1/2)*log(1/2)- (1/2)*log(1/2) = 1 

H(Rain, Temperature=mild) = -(2/3)*log(2/3)-(1/3)*log(1/3) = 0.918 

Average Entropy Information for Temperature -  

I(Rain, Temperature) = p(Rain, mild)*H(Rain, Temperature=mild) + p(Rain, cool)*H(Rain, 

Temperature=cool) 

= (2/5)*1 + (3/5)*0.918 

= 0.9508 

 

Information Gain = H(Rain) - I(Rain, Temperature) 

                 = 0.971 - 0.9508 

                 = 0.0202 

Second Attribute - Wind 

Categorical values - weak, strong 

H(Wind=weak) = -(3/3)*log(3/3)-0 = 0 

H(Wind=strong) = 0-(2/2)*log(2/2) = 0 

 

Average Entropy Information for Wind -  

I(Wind) = p(Rain, weak)*H(Rain, Wind=weak) + p(Rain, strong)*H(Rain, Wind=strong) 

= (3/5)*0 + (2/5)*0  

= 0 

 

Information Gain = H(Rain) - I(Rain, Wind) 

                 = 0.971 - 0 

                 = 0.971 

Here, the attribute with maximum information gain is Wind. So, the decision tree built so far - 
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Here, when Outlook = Rain and Wind = Strong, it is a pure class of category "no". And When Outlook 
= Rain and Wind = Weak, it is again a pure class of category "yes". 
And this is our final desired tree for the given dataset. 
 
REAL time  implementation of Algorithm 

 

ID3 Algorithm is used to build a Decision Tree to predict the weather. 
 
 
 
 
 
 
 
 
 
 
 

HYPOTHESIS SPACE SEARCH IN DECISION TREE 

LEARNING 
 

 ID3 can be characterized as searching a space of hypotheses for one that fits the training 

examples. 

 The hypothesis space searched by ID3 is the set of possible decision trees. 

 ID3 performs a simple-to complex, hill-climbing search through this hypothesis space, 

beginning with the empty tree, then considering progressively more elaborate 

hypotheses in search of a decision tree that correctly classifies the training data 



53 UNIT 1 ML                                                    Faculty Name:Mrs Swapna 

  

 

 

 
Figure: Hypothesis space search by ID3. ID3 searches through the space of possible decision 

trees from simplest to increasingly complex, guided by the information gain. 

 ID3 in terms of its search space and search strategy, there are some insight into its capabilities 

and limitations 

 

1. ID3's hypothesis space of all decision trees is a complete space of finite discrete-valued 

functions, relative to the available attributes. Because every finite discrete-valued 

function can be represented by some decision tree 

ID3 avoids one of the major risks of methods that search incomplete hypothesis spaces: 

that the hypothesis space might not contain the target function. 
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2. ID3 maintains only a single current hypothesis as it searches through the space of 

decision trees. 

 

For example, with the earlier version space candidate elimination method, which 

maintains the set of all hypotheses consistent with the available training examples. But 

ID3 maintains Single set of Hypothesis formed 

 
3. ID3 in its pure form performs no backtracking in its search. Once it selects an attribute 

to test at a particular level in the tree, it never backtracks to reconsider this choice. 

In the case of ID3, corresponds to the decision tree it selects along the single search 

path it explores.  

 

4. ID3 uses all training examples at each step in the search to make statistically based 

decisions regarding how to refine its current hypothesis. 

 

 
Why Prefer Short trees 

Hypotheses proposed by 

Theory of  Occam's razor 

 Occam's razor: is the problem-solving principle that the simplest solution tends to be 

the right one. When presented with competing hypotheses to solve a problem, one 

should select the solution with the fewest assumptions. 

 
 Occam's razor: “Prefer the simplest hypothesis that fits the data”. 
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INDUCTIVE BIAS IN DECISION TREE LEARNING 
 

Inductive bias is the set of assumptions that, together with the training data,  can also 

deductively justify the classifications assigned by the learner to future instances 

 
Given a collection of training examples, there are typically many decision trees consistent with 

these examples. Which of these decision trees does ID3 choose? 

 
ID3 search strategy 

 Selects in favour of shorter trees over longer ones 

 Selects trees that place the attributes with highest information gain closest to the root. 

 

Approximate inductive bias of ID3: Shorter trees are preferred over larger trees 
 

 Consider an algorithm that begins with the empty tree and searches breadth first through 

progressively more complex trees. 

 First considering all trees of depth 1, then all trees of depth 2, etc. 

 Once it finds a decision tree consistent with the training data, it returns the smallest 

consistent tree at that search depth (e.g., the tree with the fewest nodes). 

 Let us call this breadth-first search algorithm BFS-ID3. 

 BFS-ID3 finds a shortest decision tree and thus exhibits the bias "shorter trees are 

preferred over longer trees. 

 
A closer approximation to the inductive bias of ID3: Shorter trees are preferred over longer 

trees. Trees that place high information gain attributes close to the root are preferred over 

those that do not. 

 

 ID3 can be viewed as an efficient approximation to BFS-ID3, using a greedy heuristic 

search to attempt to find the shortest tree without conducting the entire breadth-first 

search through the hypothesis space. 

 Because ID3 uses the information gain heuristic and a hill climbing strategy, it exhibits 

a more complex bias than BFS-ID3. 
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Restriction Biases and Preference Biases 
 

Difference between the types of inductive bias exhibited by ID3 and by the CANDIDATE- 

ELIMINATION Algorithm. 

ID3: 

 ID3 searches a complete hypothesis space 

 It searches incompletely through this space, from simple to complex hypotheses, until 

its termination condition is met 

 Its inductive bias is solely a consequence of the ordering of hypotheses by its search 

strategy.  

 Preference bias – The inductive bias of ID3 is a preference for certain hypotheses over others 

(e.g., preference for shorter hypotheses over larger hypotheses), with no hard restriction on the 

hypotheses that can be eventually enumerated. This form of bias is called a preference bias or         

a search bias. 

Id3 inductive bias is called as Preference bias or search bias 

 

 

CANDIDATE-ELIMINATION Algorithm: 

 It searches this space completely, finding every hypothesis consistent with the training 

data. 

 Its inductive bias is solely a consequence of the expressive power  2(^96)  of its 

hypothesis         representation. 

 

 

Restriction bias – The bias of the CANDIDATE ELIMINATION algorithm is in the form of a 

categorical restriction on the set of hypotheses considered. This form of bias is typically called 

a restriction bias or a language bias. 

 

 

Candidate Elimaination Algorithm inductive bias is called as Preference bias or search 

bias 
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Which type of inductive bias is preferred in order to generalize beyond the training data, a 

preference bias or restriction bias? 

 

 A preference bias is more desirable than a restriction bias, because it allows the learner 

to work within a complete hypothesis space that is assured to contain the unknown target 

function. 

 In contrast, a restriction bias that strictly limits the set of potential hypotheses is 

generally less desirable, because it introduces the possibility of excluding the unknown 

target function altogether. 

 

ISSUES IN DECISION TREE LEARNING 
 

Issues in learning decision trees include 

1. Avoiding Overfitting the Data 

Reduced error pruning 

Rule post-pruning 

2. Incorporating Continuous-Valued Attributes 

3. Alternative Measures for Selecting Attributes 

4. Handling Training Examples with Missing Attribute Values 

5. Handling Attributes with Differing Costs 

 
 

1. Avoiding Overfitting the Data 
 

 The ID3 algorithm grows each branch of the tree just deeply enough to perfectly classify the 

training examples but it can lead to difficulties when there is noise in the data, or when 

the number of training examples is too small to produce a representative sample of the 

true target function. This algorithm can produce trees that overfit the training examples. 

 
 Definition - Overfit: Given a hypothesis space H, a hypothesis h ∈ H is said to overfit 

the training data if there exists some alternative hypothesis h' ∈ H, such that h has 

smaller error than h' over the training examples, but h' has a smaller error than h over 

the entire distribution of instances. 
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The below figure illustrates the impact of overfitting in a typical application of decision tree 

learning. 
 

 
 The horizontal axis of this plot indicates the total number of nodes in the decision tree, 

as the tree is being constructed. The vertical axis indicates the accuracy of predictions 

made by the tree. 

 The solid line shows the accuracy of the decision tree over the training examples. The 

broken line shows accuracy measured over an independent set of test example 

 The accuracy of the tree over the training examples increases monotonically as the tree 

is grown. The accuracy measured over the independent test examples first increases, 

then decreases. 

 

 
How can it be possible for tree h to fit the training examples better than h', but for it to perform 

more poorly over subsequent examples? 

1. Overfitting can occur when the training examples contain random errors or noise 

2. When small numbers of examples are associated with leaf nodes. 

 

 
Noisy Training Example 

 

 Example 15: <Sunny, Hot, Normal, Strong, -> 

 Example is noisy because the correct label is + 

 Previously constructed tree misclassifies it 
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Approaches to avoiding overfitting in decision tree learning 

 Pre-pruning (avoidance): Stop growing the tree earlier, before it reaches the point where it 

perfectly classifies the training data 

 Post-pruning (recovery): Allow the tree to overfit the data, and then post-prune the tree 

 
Criterion used to determine the correct final tree size 

 Use a separate set of examples, distinct from the training examples, to evaluate the utility 

of post-pruning nodes from the tree 

 Use all the available data for training, but apply a statistical test to estimate whether 

expanding (or pruning) a particular node is likely to produce an improvement beyond 

the training set 

 Use measure of the complexity for encoding the training examples and the decision tree, 

halting growth of the tree when this encoding size is minimized. This approach is called 

the Minimum Description Length 

 
MDL – Minimize : size(tree) + size (misclassifications(tree)) 
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Reduced-Error Pruning 
 

 Reduced-error pruning, is to consider each of the decision nodes in the tree to be 

candidates for pruning 

 Pruning a decision node consists of removing the subtree rooted at that node, making it 

a leaf node, and assigning it the most common classification of the training examples 

affiliated with that node 

 Nodes are removed only if the resulting pruned tree performs no worse than-the original 

over the validation set. 

 Reduced error pruning has the effect that any leaf node added due to coincidental 

regularities in the training set is likely to be pruned because these same coincidences are 

unlikely to occur in the validation set 

 
The impact of reduced-error pruning on the accuracy of the decision tree is illustrated in below 

figure 

 

 The additional line in figure shows accuracy over the test examples as the tree is pruned. 

When pruning begins, the tree is at its maximum size and lowest accuracy over the test 

set. As pruning proceeds, the number of nodes is reduced and accuracy over the test set 

increases. 

 The available data has been split into three subsets: the training examples, the validation 

examples used for pruning the tree, and a set of test examples used to provide an 

unbiased estimate of accuracy over future unseen examples. The plot shows accuracy 

over the training and test sets. 
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Rule Post-Pruning 
 

Rule post-pruning is successful method for finding high accuracy hypotheses 

 

 Rule post-pruning involves the following steps: 

 Infer the decision tree from the training set, growing the tree until the training data is fit 

as well as possible and allowing overfitting to occur. 

 Convert the learned tree into an equivalent set of rules by creating one rule for each path 

from the root node to a leaf node. 

 Prune (generalize) each rule by removing any preconditions that result in improving its 

estimated accuracy. 

 Sort the pruned rules by their estimated accuracy, and consider them in this sequence 

when classifying subsequent instances. 

 

 
Converting a Decision Tree into Rules 
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For example, consider the decision tree. The leftmost path of the tree in below figure is 

translated into the rule. 

IF (Outlook = Sunny) ^ (Humidity = High) 

THEN PlayTennis = No 

 
Given the above rule, rule post-pruning would consider removing the preconditions 

(Outlook = Sunny) and (Humidity = High) 

 
 It would select whichever of these pruning steps produced the greatest improvement in 

estimated rule accuracy, then consider pruning the second precondition as a further 

pruning step. 

 No pruning step is performed if it reduces the estimated rule accuracy. 

 
2. Incorporating Continuous-Valued Attributes 

 
Continuous-valued decision attributes can be incorporated into the learned tree. 

 
There are two methods for Handling Continuous Attributes 

1. Define new discrete valued attributes that partition the continuous attribute value into a 

discrete set of intervals. 

E.g., {high ≡ Temp > 35º C, med ≡ 10º C < Temp ≤ 35º C, low ≡ Temp ≤ 10º C} 

 
2. Using thresholds for splitting nodes 

e.g., A ≤ a produces subsets A ≤ a and A > a 
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What threshold-based Boolean attribute should be defined based on Temperature? 
 
 

 
 Pick a threshold, c, that produces the greatest information gain 

 In the current example, there are two candidate thresholds, corresponding to the values 

of Temperature at which the value of PlayTennis changes: (48 + 60)/2, and (80 + 90)/2. 

 The information gain can then be computed for each of the candidate attributes, 

Temperature >54, and Temperature >85 and the best can be selected (Temperature >54) 

 

 
3. Alternative Measures for Selecting Attributes 

 
 The problem is if attributes with many values, Gain will select it ? 

 Example: consider the attribute Date, which has a very large number of possible values. 

(e.g., March 4, 1979). 

 If this attribute is added to the PlayTennis data, it would have the highest information 

gain of any of the attributes. This is because Date alone perfectly predicts the target 

attribute over the training data. Thus, it would be selected as the decision attribute for 

the root node of the tree and lead to a tree of depth one, which perfectly classifies the 

training data. 

 This decision tree with root node Date is not a useful predictor because it perfectly 

separates the training data, but poorly predict on subsequent examples. 

 
One Approach: Use GainRatio instead of Gain 

 

The gain ratio measure penalizes attributes by incorporating a split information, that is sensitive 

to how broadly and uniformly the attribute splits the data 

 

 
Where, Si is subset of S, for which attribute A has value vi 
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4. Handling Training Examples with Missing Attribute Values 

 
The data which is available may contain missing values for some attributes 

Example: Medical diagnosis 

 <Fever = true, Blood-Pressure = normal, …, Blood-Test = ?, …> 

 Sometimes values truly unknown, sometimes low priority (or cost too high) 

 
Strategies for dealing with the missing attribute value 

 If node n test A, assign most common value of A among other training examples 

sorted to node n 

 Assign most common value of A among other training examples with same target value 

 Assign a probability pi to each of the possible values vi of A rather than simply 

assigning the most common value to A(x) 

 
5. Handling Attributes with Differing Costs 

 
 In some learning tasks the instance attributes may have associated costs. 

 For example: In learning to classify medical diseases, the patients described in terms 

of attributes such as Temperature, BiopsyResult, Pulse, BloodTestResults, etc. 

 These attributes vary significantly in their costs, both in terms of monetary cost and 

cost  to patient comfort 

 Decision trees use low-cost attributes where possible,  and depends only on high-

cost  attributes only when needed to produce reliable  and accurate classifications 
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Unit 2 

The term "Artificial neural network" refers to a biologically inspired sub-field of artificial intelligence 

modeled after the brain. An Artificial neural network is usually a computational network based on 

biological neural networks that construct the structure of the human brain. Similar to a human brain has 

neurons interconnected to each other, artificial neural networks also have neurons that are linked to each 

other in various layers of the networks. These neurons are known as nodes. 

What is Artificial Neural Network 

The term "Artificial Neural Network" is derived from Biological neural networks that develop the 

structure of a human brain. Similar to the human brain that has neurons interconnected to one another, 

artificial neural networks also have neurons that are interconnected to one another in various layers of the 

networks. These neurons are known as nodes. 

 

The given figure illustrates the typical diagram of Biological Neural Network. 

The typical Artificial Neural Network looks something like the given figure. 

 

Dendrites from Biological Neural Network represent inputs in Artificial Neural Networks, cell nucleus 

represents Nodes, synapse represents Weights, and Axon represents Output. 

Relationship between Biological neural network and artificial neural network: 
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Biological Neural Network Artificial Neural Network 

Dendrites Inputs 

Cell nucleus Nodes 

Synapse Weights 

Axon Output 

An Artificial Neural Network in the field of Artificial intelligence where it attempts to mimic the 

network of neurons makes up a human brain so that computers will have an option to understand things and 

make decisions in a human-like manner. The artificial neural network is designed by programming 

computers to behave simply like interconnected brain cells. 

There are around 1000 billion neurons in the human brain. Each neuron has an association point somewhere 

in the range of 1,000 and 100,000. In the human brain, data is stored in such a manner as to be distributed, 

and we can extract more than one piece of this data when necessary from our memory parallelly. We can 

say that the human brain is made up of incredibly amazing parallel processors. 

We can understand the artificial neural network with an example, consider an example of a digital logic gate 

that takes an input and gives an output. "OR" gate, which takes two inputs. If one or both the inputs are 

"On," then we get "On" in output. If both the inputs are "Off," then we get "Off" in output. Here the output 

depends upon input. Our brain does not perform the same task. The outputs to inputs relationship keep 

changing because of the neurons in our brain, which are "learning." 

The architecture of an artificial neural network: 

To understand the concept of the architecture of an artificial neural network, we have to understand what a 

neural network consists of. In order to define a neural network that consists of a large number of artificial 

neurons, which are termed units arranged in a sequence of layers. Lets us look at various types of layers 

available in an artificial neural network. 

Artificial Neural Network primarily consists of three layers: 
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Input Layer: 

As the name suggests, it accepts inputs in several different formats provided by the programmer. 

 

 

Hidden Layer: 

The hidden layer presents in-between input and output layers. It performs all the calculations to find hidden 

features and patterns. 

Output Layer: 

The input goes through a series of transformations using the hidden layer, which finally results in output 

that is conveyed using this layer. 

The artificial neural network takes input and computes the weighted sum of the inputs and includes a bias. 

This computation is represented in the form of a transfer function. 

 

It determines weighted total is passed as an input to an activation function to produce the output. Activation 

functions choose whether a node should fire or not. Only those who are fired make it to the output layer. 

There are distinctive activation functions available that can be applied upon the sort of task we are 

performing. 

Advantages of Artificial Neural Network (ANN) 
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Parallel processing capability: 

Artificial neural networks have a numerical value that can perform more than one task simultaneously. 

Capability to work with incomplete knowledge: 

After ANN training, the information may produce output even with inadequate data. The loss of 

performance here relies upon the significance of missing data. 

Having fault tolerance: 

Extortion of one or more cells of ANN does not prohibit it from generating output, and this feature makes 

the network fault-tolerance. 

Disadvantages of Artificial Neural Network: 

Assurance of proper network structure: 

There is no particular guideline for determining the structure of artificial neural networks. The appropriate 

network structure is accomplished through experience, trial, and error. 

Unrecognized behavior of the network: 

It is the most significant issue of ANN. When ANN produces a testing solution, it does not provide insight 

concerning why and how. It decreases trust in the network. 

 

 

Hardware dependence: 

Artificial neural networks need processors with parallel processing power, as per their structure. Therefore, 

the realization of the equipment is dependent. 

Difficulty of showing the issue to the network: 

ANNs can work with numerical data. Problems must be converted into numerical values before being 

introduced to ANN. The presentation mechanism to be resolved here will directly impact the performance 

of the network. It relies on the user's abilities. 

The duration of the network is unknown: 

The network is reduced to a specific value of the error, and this value does not give us optimum results. 

PERCEPTRON 

 

 One type of ANN system is based on a unit called a perceptron. Perceptron is a single layer 

neural network. 
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Figure: A perceptron 

 

 A perceptron takes a vector of real-valued inputs, calculates a linear combination of these 

inputs, then outputs a 1 if the result is greater than some threshold and -1 otherwise. 

 Given inputs x through x, the output O(x1, . . . , xn) computed by the perceptron is 
 

 

 

 Where, each wi is a real-valued constant, or weight, that determines the contribution of input 

xi to the perceptron output. 

 -w0 is a threshold that the weighted combination of inputs w1x1 + . . . + wnxn must surpass in 

order for the perceptron to output a 1. 
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Representational Power of Perceptrons 

 

 The perceptron can be viewed as representing a hyperplane decision surface in the n- 

dimensional space of instances (i.e., points) 

 The perceptron outputs a 1 for instances lying on one side of the hyperplane and outputs a -1 

for instances lying on the other side, as illustrated in below figure 

 

 

 

Perceptrons can represent all of the primitive Boolean functions AND, OR, NAND (~ AND), and 

NOR (~OR) 

Example: Representation of AND functions 

 

 

 

If A=0 & B=0 → 0*0.6 + 0*0.6 = 0. 

This is not greater than the threshold of 1, so the output = 0. 

If A=0 & B=1 → 0*0.6 + 1*0.6 = 0.6. 

This is not greater than the threshold, so the output = 0. 

If A=1 & B=0 → 1*0.6 + 0*0.6 = 0.6. 

This is not greater than the threshold, so the output = 0. 

If A=1 & B=1 → 1*0.6 + 1*0.6 = 1.2. 

This exceeds the threshold, so the output = 1. 
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Drawback of perceptron 

 The perceptron rule finds a successful weight vector when the training examples are linearly 

separable, it can fail to converge if the examples are not linearly separable 

The Perceptron Training Rule 

 
The learning problem is to determine a weight vector that causes the perceptron to produce the correct 

+ 1 or - 1 output for each of the given training examples. 

 

To learn an acceptable weight vector 

 Begin with random weights, then iteratively apply the perceptron to each training example, 

modifying the perceptron weights whenever it misclassifies an example. 

 This process is repeated, iterating through the training examples as many times as needed 

until the perceptron classifies all training examples correctly. 

 Weights are modified at each step according to the perceptron training rule, which revises the 

weight wi associated with input xi according to the rule. 

 

 

 

 

Drawback: 

The perceptron rule finds a successful weight vector when the training examples are linearly separable, it 

can fail to converge if the examples are not linearly separable. 
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Problem 1 

Truth Table of OR Logical GATE is, 

 

Weights w1 = 0.6, w2 = 0.6, Threshold = 1 and Learning Rate n = 0.5 are given 

For Training Instance 1: A=0, B=0 and Target = 0 

wi.xi = 0*0.6 + 0*0.6 = 0 

This is not greater than the threshold of 1, so the output = 0. Here the target is same as calculated output. 

For Training Instance 2: A=0, B=1 and Target = 1 

wi.xi = 0*0.6 + 1*0.6 = 0.6 

This is not greater than the threshold of 1, so the output = 0. Here the target does not match with calculated 

output. 

 

Now, 

Weights w1 = 0.6, w2 = 1.1, Threshold = 1 and Learning Rate n = 0.5 are given 

For Training Instance 1: A=0, B=0 and Target = 0 
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wi.xi = 0*0.6 + 0*1.1 = 0 

This is not greater than the threshold of 1, so the output = 0. Here the target is same as calculated output. 

For Training Instance 2: A=0, B=1 and Target = 1 

wi.xi = 0*0.6 + 1*1.1 = 1.1 

This is  greater than the threshold of 1, so the output = 1. Here the target is same as calculated output. 

For Training Instance 3: A=1, B=0 and Target = 1 

wi.xi = 1*0.6 + 0*1.1 = 0.6 

This is not greater than the threshold of 1, so the output = 0. Here the target does not match with calculated 

output. 

 

Now, 

Weights w1 = 1.1, w2 = 1.1, Threshold = 1 and Learning Rate n = 0.5 are given 

For Training Instance 1: A=0, B=0 and Target = 0 

wi.xi = 0*2.2 + 0*1.1 = 0 

This is not greater than the threshold of 1, so the output = 0. Here the target is same as calculated output. 

For Training Instance 2: A=0, B=1 and Target = 1 

wi.xi = 0*1.1 + 1*1.1 = 1.1 

This is  greater than the threshold of 1, so the output = 0. Here the target is same as calculated output. 

For Training Instance 3: A=1, B=0 and Target = 1 
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wi.xi = 1*1.1 + 0*1.1 = 1.1 

This is greater than the threshold of 1, so the output = 1. Here the target is same as calculated output. 

For Training Instance 4: A=1, B=1 and Target = 1 

wi.xi = 1*1.1 + 1*1.1 = 2.2 

This is greater than the threshold of 1, so the output = 1. Here the target is same as calculated output. 

Final wieghts w1 = 1.1, w2 = 1.1 Threshold = 1 and Learning Rate n = 0.5. 

 

---------------------------------------------------------------------------------------------------------------------------------- 

  Problem 2 

Truth Table of AND Logical GATE is, 

 

Weights w1 = 1.2, w2 = 0.6, Threshold = 1 and Learning Rate n = 0.5 are given 

For Training Instance 1: A=0, B=0 and Target = 0 

wi.xi = 0*1.2 + 0*0.6 = 0 

This is not greater than the threshold of 1, so the output = 0, Here the target is same as calculated output. 
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For Training Instance 2: A=0, B=1 and Target = 0 

wi.xi = 0*1.2 + 1*0.6 = 0.6 

This is not greater than the threshold of 1, so the output = 0. Here the target is same as calculated output. 

For Training Instance 2: A=1, B=0 and Target = 0 

wi.xi = 1*1.2 + 0*0.6 = 1.2 

This is greater than the threshold of 1, so the output = 1. Here the target does not match with the calculated 

output. 

Hence we need to update the weights. 

 

Now, 

After updating weights are w1 = 0.7, w2 = 0.6 Threshold = 1 and Learning Rate n = 0.5 

W1 = 0.7, w2 = 0.6 Threshold = 1 and Learning Rate n = 0.5 

For Training Instance 1: A=0, B=0 and Target = 0 

wi.xi = 0*0.7 + 0*0.6 = 0 

This is not greater than the threshold of 1, so the output = 0. Here the target is same as calculated output. 

For Training Instance 2: A=0, B=1 and Target = 0 

wi.xi = 0*0.7 + 1*0.6 = 0.6 

This is not greater than the threshold of 1, so the output = 0. Here the target is same as calculated output. 

For Training Instance 3: A=1, B=0 and Target = 0 
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wi.xi = 1*0.7 + 0*0.6 = 0.7 

This is not greater than the threshold of 1, so the output = 0. Here the target is same as calculated output. 

For Training Instance 4: A=1, B=1 and Target = 1 

wi.xi = 1*0.7 + 1*0.6 = 1.3 

This is greater than the threshold of 1, so the output = 1. Here the target is same as calculated output. 

Hence the final weights are w1= 0.7 and w2 = 0.6, Threshold = 1 and Learning Rate n = 0.5. 

 

------------------------------------------------------------------------------------------------------------------------------ 

 An Example for NEURAL NETWORK REPRESENTATIONS in Real Time 

 

 A prototypical example of ANN learning is provided by  author Pomerleau's system ALVINN,  

(Autonomous Land Vehicle In a Neural Network) which uses a learned ANN to steer an 

autonomous vehicle driving at normal speeds on public highways 

 The input to the neural network is a 30x32 grid of pixel intensities obtained from a forward-

pointed camera mounted on the vehicle. 

 The network output is the direction in which the vehicle is steered 
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Figure: Neural network learning to steer an autonomous vehicle. 

 Figure illustrates the neural network representation. 

 The network is shown on the left side of the figure, with the input camera image depicted below it. 

 Each node (i.e., circle) in the network diagram corresponds to the output of a single network 

unit, and the lines entering the node from below are its inputs. 

 There are four units that receive inputs directly from all of the 30 x 32 pixels in the image. 

These are called "hidden" units because their output is available only within the network and is 

not available as part of the global network output. Each of these four hidden units computes a 

single real-valued output based on a weighted combination of its 960 inputs 

 These hidden unit outputs are then used as inputs to a second layer of 30 "output" units. 

 Each output unit corresponds to a particular steering direction, and the output values of these 

units determine which steering direction is recommended most strongly. 

 The diagrams on the right side of the figure depict the learned weight values associated with 

one of the four hidden units in this ANN. 

 The large matrix of black and white boxes on the lower right depicts the weights from the 30 

x 32 pixel inputs into the hidden unit. Here, a white box indicates a positive weight, a black 

box a negative weight, and the size of the box indicates the weight magnitude. 

-------------------------------------------------------------------------------------------------------- 

APPROPRIATE PROBLEMS FOR NEURAL NETWORK LEARNING 

 

ANN learning is well-suited to problems in which the training data corresponds to noisy, 

complex sensor data, such as inputs from cameras and microphones. 
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ANN is appropriate for problems with the following characteristics: 

 

1. Instances which are represented by many attribute-value pairs. 

2. The target function output may be discrete-valued, real-valued, or a vector of several real- 

or discrete-valued attributes. 

3. The training examples may contain errors. 

4. Long training times are acceptable to train. 

5. Fast evaluation of the learned target function it can also support fast testing process. 

Multi-layer Perceptron in TensorFlow 

Multi-Layer perceptron defines the most complex architecture of artificial neural networks. It is 

substantially formed from multiple layers of the perceptron. TensorFlow is a very popular deep learning 

framework released by, and this notebook will guide to build a neural network with this library. If we want 

to understand what is a   Multi-layer perceptron, The pictorial representation of multi-layer perceptron 

learning is as shown below- 

 

MLP networks are used for supervised learning format. A typical learning algorithm for MLP networks is 

also called back propagation's algorithm. 

A multilayer perceptron (MLP) is a feed forward artificial neural network that generates a set of outputs 

from a set of inputs. An MLP is characterized by several layers of input nodes connected as a directed graph 

between the input nodes connected as a directed graph between the input and output layers. MLP uses back 

propagation for training the network. MLP is a deep learning method. 

MULTILAYER NETWORKS AND THE BACKPROPAGATION ALGORITHM example 

 

Multilayer networks learned by the BACKPROPAGATION algorithm are capable of expressing a 

rich variety of nonlinear decision surfaces. 
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Consider the example: 

 Here the speech recognition task involves distinguishing among 10 possible vowels, all spoken 

in the context of "h_d" (i.e., "hid," "had," "head," "hood," etc.). 

 The network input consists of two parameters, F1 and F2, obtained from a spectral analysis of 

the sound. The 10 network outputs correspond to the 10 possible vowel sounds. The network 

prediction is the output whose value is highest. 

 The plot on the right illustrates the highly nonlinear decision surface represented by the learned 

network. Points shown on the plot are test examples distinct from the examples used to train 

the network. 

 

 

What is back propagation? 

We can define the back propagation algorithm as an algorithm that trains some given feed-forward Neural 

Network for a given input pattern where the classifications are known to us. At the point when every 

passage of the example set is exhibited to the network, the network looks at its yield reaction to the 

example input pattern. After that, the comparison done between output response and expected output with 

the error value is measured. Later, we adjust the connection weight based upon the error value measured.  

 In simple terms, after each feed-forward passes through a network, this algorithm does the backward pass 

to adjust the model’s parameters based on weights and biases. A typical supervised learning algorithm 

attempts to find a function that maps input data to the right output.  Back propagation works with a multi-

layered neural network and learns internal representations of input to output mapping.   

How does back propagation work? 

Let us take a look at how back propagation works. It has four layers: input layer, hidden layer, hidden 

layer II and final output layer. 

So, the main three layers are: 

1. Input layer 

2. Hidden layer 
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3. Output layer 

Each layer has its own way of working and its own way to take action such that we are able to get the 

desired results and correlate these scenarios to our conditions. Let us discuss other details needed to help 

summarizing this algorithm. 

 

This image summarizes the functioning of the backpropagation approach. 

1. Input layer receives x 

2. Input is modeled using weights w 

3. Each hidden layer calculates the output and data is ready at the output layer 

4. Difference between actual output and desired output is known as the error 

5. Go back to the hidden layers and adjust the weights so that this error is reduced in future runs 

This process is repeated till we get the desired output. The training phase is done with supervision.  Once 

the model is stable, it is used in production. 

Why do we need back propagation? 

Back propagation has many advantages, some of the important ones are listed below- 

 Back propagation is fast, simple and easy to implement 

 There are no parameters to be tuned 

 Prior knowledge about the network is not needed thus becoming a flexible method 

 This approach works very well in most cases 

Feed forward network 

Feed forward networks are also called MLN i.e Multi-layered Networks. They are known as feed-forward 

because the data only travels forward in NN through input node, hidden layer and finally to the output 

nodes.  It is the simplest type of artificial neural network. 

Disadvantages of using Backpropagation 

 The actual performance of backpropagation on a specific problem is dependent on the input data. 

 Back propagation algorithm  can be quite sensitive to noisy data 

https://www.mygreatlearning.com/blog/types-of-neural-networks/#feedforwardnn
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Gradient Descent 

A gradient measures how much the output of a function changes if you change the inputs a little bit." 

— Lex Fridman (MIT) 

 The key idea behind the delta rule is to use gradient descent to search the hypothesis space 

of possible weight vectors to find the weights that best fit the training examples. 

To understand the delta training rule, consider the task of training a threshold perception. That is, a 

linear unit for which the output O is given by 

 

 

To derive a weight learning rule for linear units, specify a measure for the training error of a 

hypothesis (weight vector), relative to the training examples. 

 
 

Where, 

 D is the set of training examples, 

 td is the target output for training example d, 

 od is the output of the linear unit for training example d 

 E ( w   → ) is simply half the squared difference between the target output td  and the linear unit 

output od, summed over all training examples. 

 

Gradient Descent  Error Estimation in 3 dimensional plane 

A gradient simply measures the change in all weights with regard to the change in error. You can also think 

of a gradient as the slope of a function. The higher the gradient, the steeper the slope and the faster a model 

can learn. But if the slope is zero, the model stops learning. 

 

Visualizing the Hypothesis Space 

 

 To understand the gradient descent algorithm, it is helpful to visualize the entire hypothesis 

space of possible weight vectors and their associated E values as shown in below figure. 

 Here the axes w0 and wl represent possible values for the two weights of a simple linear unit. 

The w0, wl plane therefore represents the entire hypothesis space. 

 The vertical axis indicates the error E relative to some fixed set of training examples. 

 The arrow shows the negated gradient at one particular point, indicating the direction in the w0, 

wl plane producing steepest descent along the error surface. 

 The error surface shown in the figure thus summarizes the desirability of every weight vector 

in the hypothesis space 
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 Given the way in which we chose to define E, for linear units this error surface must always 

be parabolic with a single global minimum. 

 

Gradient descent search determines a weight vector that minimizes E by starting with an arbitrary 

initial weight vector, then repeatedly modifying it in small steps. 

At each step, the weight vector is altered in the direction that produces the steepest descent along the 

error surface depicted in above figure. This process continues until the global minimum error is 

reached. 

 

Types of Gradient Descent 

There are three popular types of gradient descent that mainly differ in the amount of data they use:  

BATCH GRADIENT DESCENT 

Batch gradient descent, also called vanilla gradient descent, calculates the error for each example within the 

training dataset, but only after all training examples have been evaluated does the model get updated. This 

whole process is like a cycle and it's called a training epoch. 

Some advantages of batch gradient descent are its computational efficient, it produces a stable error gradient 

and a stable convergence. Some disadvantages are the stable error gradient can sometimes result in a state 

of convergence that isn’t the best the model can achieve. It also requires the entire training dataset be in 

memory and available to the algorithm. 

STOCHASTIC GRADIENT DESCENT 

By contrast, stochastic gradient descent (SGD) does this for each training example within the dataset, 

meaning it updates the parameters for whole  training  data set example one by one. Depending on the 

problem, this can make SGD faster than batch gradient descent.  

The frequent updates, however, are more computationally expensive than the batch gradient descent 

approach.  
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Additionally, the frequency of those updates can result in noisy gradients, which may cause the error rate to 

jump around instead of slowly decreasing. 

MINI-BATCH GRADIENT DESCENT 

Mini-batch gradient descent is the go-to method since it’s a combination of the concepts of SGD and batch 

gradient descent. It simply splits the training dataset into small batches and performs an update for each of 

those batches.  

This creates a balance between the robustness of stochastic gradient descent and the efficiency of batch 

gradient descent. 

-------------------------------------------------------------------------------------------------------------------------------- 

Derivation of the Gradient Descent Rule 

How to calculate the direction of steepest descent along the error surface? 

 

The direction of steepest can be found by computing the derivative of E with respect to each 

component of the vector w   → . This vector derivative is called the gradient of E with respect to 

 w  → , written as 

 

 

 

The gradient specifies the direction of steepest increase of E, the training rule for          gradient 

descent is 

 

 Here η is a positive constant called the learning rate, which determines the step size in the 

gradient descent search. 

 The negative sign is present because we want to move the weight vector in the direction 

that decreases E. 

 

This training rule can also be written in its component form 



 

Faculty Name : Mrs Swapna                                                                                            Subject Name :ML 

 

Calculate the gradient at each step. The vector  derivatives that form the 

gradient can be obtained by differentiating E from Equation (2), as 
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To summarize, the gradient descent algorithm for training linear units is as follows: 

 Pick an initial random weight vector. 

 Apply the linear unit to all training examples, then compute Δwi for each weight 

according to  

 

 

 

 Update each weight wi by adding Δwi, then repeat this process 

Issues in Gradient Descent Algorithm 

 Can veer off in the wrong direction due to frequent updates. 

 Frequent updates are computationally expensive in process due to using all resources for 

processing one training sample at a time. 

 

Example of Feed Forward Network and back propagation in Real time: Face recognition 

 

Face recognition using neural network explains about concept of improving performance of 

detecting face by using neural technology. Fundamental part of face recognition is done through 
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face detection system. Problems with face detection from arbitrary images are due to changes in 

skin color, quality of image position and orientation. 

 

Different set of multilayer neural network work on detection of face and back propagation 

algorithm is used for error detection when the face is undetected by machine. 
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Face Recognition Tasks 

The task of face recognition is broad and can be tailored to the specific needs of a prediction 

problem. 

For example, in the 1995 paper titled “Human and machine recognition of faces: A survey,” the 

authors describe three face recognition tasks: 

 Face Matching: Find the best match for a given face. 

 Face Similarity: Find faces that are most similar to a given face. 

 Face Transformation: Generate new faces that are similar to a given face. 

 

With face detection, you can get the information you need to perform tasks like embellishing 

selfies and portraits, or generating avatars from a user's photo. 

 

https://ieeexplore.ieee.org/abstract/document/381842
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Key capabilities 

 Recognize and locate facial features Get the coordinates of the eyes, ears, cheeks, nose, and 

mouth of every face detected. 

 Get the contours of facial features Get the contours of detected faces and their eyes, eyebrows, 

lips, and nose. 

 Recognize facial expressions Determine whether a person is smiling or has their eyes closed. 

 Track faces across video frames Get an identifier for each unique detected face. The identifier 

is consistent across invocations, so you can perform image manipulation on a particular person in 

a video stream. 

 Process video frames in real time Face detection is performed on the device, and is fast enough 

to be used in real-time applications, such as video manipulation. 

Face alignment 

Face alignment is a computer vision technology for identifying the geometric structure of 

human faces in digital images. Given the location and size of a face, it automatically 

determines the shape of the face components such as eyes and nose. 

 

Feature extraction refers to the process of transforming raw data into numerical features 

that can be processed while preserving the information in the original data set. 

 

Feature matching refers to finding corresponding features from two similar images based on 

a search distance algorithm. One of the images is considered the source and the other as target, 

and the feature matching technique is used to either find or derive and transfer attributes from 

source to target image 

--------------------------------------------------------------------------------------------------------------------- 

Advance Topics in neural network 

1. Alternative Error Functions 

2. Alternative Error Minimization Procedures 

3. Recurrent Networks 

4. Dynamically Modifying Network Structure 

 

1.Alternative Error Functions 

the basic BACKPROPAGATION algorithm defines E in terms of the sum of squared errors 

of the network, other definitions have been suggested in order to incorporate other constraints 
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into the weight-tuning rule. For each new definition of E a new weight-tuning rule for 

gradient descent must be derived. Examples of alternative definitions of E include a Adding a 

penalty term for weight magnitude to Adjust Weights to achieve Global minima point 

the new penalty weight added is  

 

Gamma is constant term and wji is new penalty weight adjusted for error reduction 

       2. Alternative Error Minimization Procedures 

1.Weight-update method  

Direction: choosing a direction in which to alter or converge the current weight vector (ex: 

the gradient in Backpropagation) which depends on Distance : choosing a distance to move 

(ex: the learning ratio η )  

Ex : Line search method, Conjugate gradient method 

Line search method is an iterative approach to find a local minimum of a multidimensional 

nonlinear function using the function's gradients. It computes a search direction and then finds an 

acceptable step length that Line search method can be categorized into exact and inexact 

methods.  

Gradient descent is computationally efficient, provides a slow rate of convergence. This is where 

line search comes into place and provides much better rate of convergence at a slight 

increase in computational and  accuracy 

The conjugate gradient method is a mathematical technique that can be useful for the 

optimization of both linear and non-linear systems. This technique is generally used as an 

iterative algorithm, however, it can be used as a direct method, and it will produce a numerical 

solution. Generally this method is used for very large systems where it is not practical to solve 

with a direct method of Gradient Decent back propagation. 

3.Recurrent Networks 

 

A recurrent neural network (RNN) is a type of artificial neural network which uses sequential 

data or time series data which are dynamic in nature. These deep learning algorithms are 

commonly used for ordinal or temporal problems, such as language translation, natural language 
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processing (nlp), speech recognition, and image captioning; they are incorporated into popular 

applications such as Siri, voice search, and Google Translate.  

 

Like feedforward and convolutional neural networks (CNNs), recurrent neural networks utilize 

training data to learn. They are distinguished by their “memory” as they take information from 

prior inputs to influence the current input and output within a specific time step .  

 

 

 

Types of neural Network 

 

1. One to many network 

2. One to one network 

3. Many to one network 

4. Many to many network 

 

4. Dynamically Modified network structure 

 

Dynamic Neural networks can be considered as the improvement of the static neural networks in 

which by adding more decision algorithms we can make neural networks learning dynamically 

from the input and generate better quality results. 

Modifying the network structure in hidden layer by adding and pruning the structure for better 

results and accuracy. 

------------------------------------------------------------------------------------------------------------------- 

REMARKS ON THE BACKPROPAGATION ALGORITHM 

 

1. Convergence to Local Minima Global Mininum 

 The BACKPROPAGATION multilayer networks is only guaranteed to converge toward 

some local minimum in E and not necessarily to the global minimum error. 

 Despite the lack of assured convergence to the global minimum error, 

BACKPROPAGATION is a highly effective function approximation method in practice. 

 To alleviate  this convergence we have frequently update the weights 

 Can use batch and stochastic gradient decent to improve the  efficiency and reduction in 

error is possible in multilayer network. 

2. Representational Power of Feedforward Networks 

 

What set of functions can be represented by feed-forward networks? 

https://analyticsindiamag.com/exploring-graph-neural-networks/
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The answer depends on the width and depth of the networks. There are three quite 

general results are known about which function classes can be described by which types 

of Networks 

 

1. Boolean functions – Every boolean function can be represented exactly by some network 

with two layers of units, although the number of hidden units required grows exponentially 

in the worst case with the number of network inputs 

 

2. Continuous functions – Every bounded continuous function can be approximated with 

arbitrarily small error by a network with two layers of units 

 

3. Arbitrary functions – Any function can be approximated to arbitrary accuracy by a 

network with three layers of units. 

 

3. Hypothesis Space Search and Inductive Bias 

 

 Hypothesis space is the n-dimensional Euclidean space of the n network weights and  

hypothesis space is continuous. 

 As it is continuous, E is differentiable with respect to the continuous parameters of the 

hypothesis, results in a well-defined error gradient that provides a very useful structure for 

organizing the search for the best hypothesis. 

 

 It is difficult to characterize precisely the inductive bias of BACKPROPAGATION 

algorithm, because it depends on the interplay between the gradient descent and the way in 

which the weight space are adjusted to achieve global and local minima.  

 

 However, one can roughly characterize it as smooth interpolation between different data 

nodes between input ,output and hiddenlayer  . 

 

4. Hidden Layer Representations 

 

BACKPROPAGATION can define new hidden layer features that are not explicit in the 

input representation, but which capture properties of the input instances that are most 

relevant to learning the target function. 

 

Consider example, the network shown in below Figure 
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 Consider training the network shown in Figure to learn the simple target function f (x) 

= x, where x is a vector containing seven 0's and a single 1. 

 The network must learn to reproduce the eight inputs at the corresponding eight 

output units. Although this is a simple function, the network in this case is 

constrained to use only three hidden units. Therefore, the essential information 

from all eight input units must be captured by the three learned hidden units. 

 When BACKPROPAGATION applied to this task, using each of the eight possible 

vectors as training examples, it successfully learns the target function. By 

examining the hidden unit values generated by the learned network for each of the 

eight possible input vectors, it is easy to see that the learned encoding is similar to 
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the familiar standard binary encoding of eight values using three bits (e.g., 

000,001,010,. . . , 111). The exact values of the hidden units for one typical run of 

shown in Figure. 

 This ability of multilayer networks to automatically discover useful representations 

at the hidden layers is a key feature of ANN learning 

 

5. Generalization of weights reduces errors, Over fitting data makes the error reduction 

process complex, and Stopping Criterion when error is optimal when achieved global 

minima point. 

 

What is an appropriate condition for terminating the weight update loop?  

 

One choice is to continue training until the error E on the training examples falls below 

some predetermined threshold. 

To see the dangers of minimizing the error over the training data, consider how the 

error E varies with the number of weight iterations 

 

 

 

 

 



 

Faculty Name : Mrs Swapna                                                                                            Subject Name :ML 

 

 
 

 

 Consider first the top plot in this figure. The lower of the two lines shows the 

monotonically decreasing error E over the training set, as the number of gradient 

descent iterations grows.  

 The upper line shows the error E measured over a different validation set of 

examples, distinct from the training examples. This line measures the 

generalization accuracy of the network-the accuracy with which it fits examples 

beyond the training data. 

 

 The generalization accuracy measured over the validation examples first decreases, 

then increases, even as the error over the training examples continues to decrease.  

 

When the training data set increases over fitting increase the complexity of error 

and reduction of the error may take n number of iterations to modify the weights 

which becomes a tedious task. 

 

Estimating Hypothesis Accuracy 

A model is constructed based on hypothesis and estimating hypothesis based on accuracy which 

is best this is based on sample data or additional sample data which is taken into consideration in 

learning. 

Different instances in the model are taken into consideration 
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Example in h1 hypothesis is having 100 instances and h2 hypothesis have 50 instances 

The estimation is based on sample data and error frequency in different instances 

Acccuracy is based on Error Levels in the model  

This is made clear by distinguishing between the true error of a model and the estimated or 

sample error. 

 Sample Error. Estimate of error calculated on a sample data. 

 

 The sample error (errors(h)) of hypothesis h with respect to target function f and data 

sample S is 

 

 
 

Where n is the number of examples in S, and the quantity δ(f(x), h(x)) is 1 if error  is 

identified 

 if f (x) ≠ h(x), and 0 no error  identified. 

 

 

 True Error: Estimation of Error over entire distribution  

 The true error (errorD(h)) of hypothesis h with respect to target function f and distribution 

D, is the probability that h will misclassify an instance drawn at random according to D. 

Confidence Intervals for Discrete-Valued Hypotheses 

Suppose we wish to estimate the true error for some discrete valued hypothesis h, based on its 

observed sample error over a sample S, where 

 The sample S contains n examples drawn independent of one another, and independent 

of h, according to the probability distribution D 

 n ≥ 30 

 Hypothesis h commits r errors over these n examples (i.e., errors (h) = r/n). 
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Under these conditions, statistical theory allows to make the following assertions: 

1. Given no other information, the most probable value of errorD (h) is errors(h) 

2. With approximately 95% probability, the true error errorD (h) lies in the interval 

 

 

Example: 

 

Suppose the data sample S contains n = 40 examples and that hypothesis h commits r = 

12 errors over this data. 

 The sample error is errors(h) = r/n = 12/40 = 0.30 

 Given no other information, true error is errorD (h) = errors(h), i.e., errorD (h) 

= 0.30 

 With the 95% confidence interval estimate for errorD (h). 

= 0.30 ± (1.96 * 0.07) = 0.30 ± 0.14 

 

 

3. A different constant, ZN, is used to calculate the N% confidence interval. The general 

expression for approximate N% confidence intervals for errorD (h) is 

Where, 
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The above equation describes how to calculate the confidence intervals, or error bars, 

for estimates of errorD (h) that are based on errors(h) 

 

Example: 

Suppose the data sample S contains n = 40 examples and that hypothesis h commits r = 

12 errors over this data. 

 The sample error is errors(h) = r/n = 12/40 = 0.30 

 With the 68% confidence interval estimate for errorD (h). 

= 0.30 ± (1.00 * 0.07) 

= 0.30 ± 0.07 

 

Basics of Sampling Theory 
Sampling theory is the field of statistics that is involved 

with the collection, analysis and interpretation of data gathered 

from random samples of a population under study.  

 

The application of sampling theory is concerned not only with the proper 

selection of observations from the population that will 

constitute the random sample; it also involves the use of 

probability theory, along with prior knowledge about the 

population parameters, to analyze the data from the random sample 

and develop conclusions from the analysis 
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The Binomial Distribution 

 

Consider the following problem for better understanding of Binomial Distribution 

 Given a worn and bent coin and estimate the probability that the coin will turn up heads 

when tossed. 

 Unknown probability of heads p. Toss the coin n times and record the number of times 

r that it turns up heads. 

Estimate of p = r / n 

 

 If the experiment were rerun, generating a new set of n coin tosses, we might expect the 

number of heads r to vary somewhat from the value measured in the first experiment, 

yielding a somewhat different estimate for p. 

 The Binomial distribution describes for each possible value of r (i.e., from 0 to n), the 

probability of observing exactly r heads given a sample of n independent tosses of a 
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coin whose true probability of heads is p. 

COMPARING LEARNING ALGORITHMS 

Which are important parameter of hypothesis testing ? 

Null hypothesis :- In inferential statistics(make predictions (“inferences”) from that data.), the 

null hypothesis is a general statement or default position that there is no relationship between two 

measured phenomena, or no association among groups 

In other words it is a basic assumption or made based on domain or problem knowledge. 

Ex : a company production is = 50 unit/per day etc. 

Alternative hypothesis :- 

The alternative hypothesis is the hypothesis used in hypothesis testing that is contrary to the null 

hypothesis. It is usually taken to be that the observations are the result of a real effect (with some 

evidence) 

Level of significance: Refers to the degree of significance in which we accept or reject the null-

hypothesis. 100% accuracy is not possible for accepting or rejecting a hypothesis, so we therefore 

select a level of significance that is usually 5%. 

This is normally denoted with alpha(maths symbol ) and generally it is 0.05 or 5% , which means 

your output should be 95% confident to give similar kind of result in each sample. 
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Type I error: When we reject the null hypothesis, although that hypothesis was true. Type I error 

is denoted by alpha. In hypothesis testing, the normal curve that shows the critical region is called 

the alpha region 

Type II errors: When we accept the null hypothesis but it is false. Type II errors are denoted by 

beta. In Hypothesis testing, the normal curve that shows the acceptance region is called the beta 

region. 

 

One tailed test :- A test of a statistical hypothesis , where the region of rejection is on 

only one side of the sampling distribution , is called a one-tailed test. 

Two-tailed test :- A two-tailed test is a statistical test in which the critical area of a distribution 

is two-sided and tests whether a sample is greater than or less than a certain range of values. If the 

sample being tested falls into either of the critical areas, the alternative hypothesis is accepted 

instead of the null hypothesis. 

Some of widely used hypothesis testing type( not in syllabus) 

1. T Test 
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2. Z Test 

3. F- Test 

4. ANOVA 

5. Chi-Square Test 
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UNIT 3 

Bayes Theorem provides a principled way for calculating a conditional probability. 

Bayes Theorem is also widely used in the field of machine learning. Including its use in a 

probability framework for fitting a model to a training dataset, referred to as maximum a 

posteriori or MAP for short, and in developing models for classification predictive modeling 

problems such as the Bayes Optimal Classifier and Naive Bayes. 

 Joint Probability: Probability of two (or more) simultaneous events, e.g. P(A and B) or P(A, B). 

The conditional probability is the probability of one event given the occurrence of another event, 

often described in terms of events A and B from two dependent random variables e.g. X and Y. 

 Conditional Probability: Probability of one (or more) event given the occurrence of another 

event, e.g. P(A given B) or P(A | B). 

The joint probability can be calculated using the conditional probability; for example: 

 P(A, B) = P(A | B) * P(B) 

This is called the product rule. Importantly, the joint probability is symmetrical, meaning that: 

 P(A, B) = P(B, A) 

The conditional probability can be calculated using the joint probability; for example: 

 P(A | B) = P(A, B) / P(B) 

An Alternate Way To Calculate Conditional Probability 

The conditional probability can be calculated using the other conditional probability; for 

example: 

 P(A|B) = P(B|A) * P(A) / P(B) 

The reverse is also true; for example: 

 P(B|A) = P(A|B) * P(B) / P(A) 

 

Bayes theorem is a theorem in probability and statistics, named after the Reverend Thomas 

Bayes, that helps in determining the probability of an event that is based on some event that has 

already occurred. Bayes theorem has many applications such as bayesian interference, in the 

healthcare sector - to determine the chances of developing health problems with an increase in 

age and many others.  
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Bayes theorem, in simple words, determines the conditional probability of an event A given that 

event B has already occurred. Bayes theorem is also known as the Bayes Rule or Bayes Law. 

 

It can be helpful to think about the calculation from these different perspectives and help to map 

your problem onto the equation. 

Firstly, in general, the result P(A|B) is referred to as the posterior probability and P(A) is 

referred to as the prior probability. 

 P(A|B): Posterior probability. 

 P(A): Prior probability. 

Sometimes P(B|A) is referred to as the likelihood and P(B) is referred to as the evidence. 

 P(B|A): Likelihood. 

 P(B): Evidence. 

This allows Bayes Theorem to be restated as: 

 Posterior = Likelihood * Prior / Evidence 

 

 

Maximum a Posteriori (MAP) Hypothesis 

 
 In many learning scenarios, the learner considers some set of candidate 

hypotheses H and is interested in finding the most probable hypothesis h ∈ 

H given the observed data 
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D. Any such maximally probable hypothesis is called a maximum a posteriori 

(MAP) hypothesis. 

 Bayes theorem to calculate the posterior probability of each candidate 

hypothesis is hMAP is a MAP hypothesis provided 

 

 
 P(D) can be dropped, because it is a constant independent of h 

 
Notations 

 P(h) prior probability of h, reflects any background knowledge about the 

chance that h is correct 

 P(D) prior probability of D, probability that D will be observed 

 P(D|h) probability of observing D given a world in which h holds 

 P(h|D) posterior probability of h, reflects confidence that h holds after D 

has been observed 

Maximum Likelihood (ML) Hypothesis 

 
 In some cases, it is assumed that every hypothesis in H is equally 

probable a priori (P(hi) = P(hj) for all hi and hj in H). 

 In this case the below equation can be simplified and need only consider the 

term P(D|h) to find the most probable hypothesis. 
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P(D|h) is often called the likelihood of the data D given h, and any hypothesis that 

maximizes P(D|h) is called a maximum likelihood (ML) hypothesis 

 

Example 

 Consider a medical diagnosis problem in which there are two alternative 
hypotheses: 

(1) that the patient has particular form of cancer, and (2) that the patient 

does not. The available data is from a particular laboratory test with two 

possible outcomes: + (positive) and - (negative). 

 

 We have prior knowledge that over the entire population of people only 

.008 have this disease. Furthermore, the lab test is only an imperfect 

indicator of the disease. 

 The test returns a correct positive result in only 98% of the cases in which 

the disease is actually present and a correct negative result in only 97% of 

the cases in which the disease is not present. In other cases, the test 

returns the opposite result. 

 The above situation can be summarized by the following probabilities: 
 
 

 
Suppose a new patient is observed for whom the lab test returns a positive 

(+) result. Should we diagnose the patient as having cancer or not? 

 
The exact posterior probabilities can also be determined by normalizing the above 

quantities so that they sum  
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Result : The Patient is not Having  Cancer 
 

BAYES THEOREM AND CONCEPT LEARNING 

 
What is the relationship between Bayes theorem and the problem of concept learning? 

 
Since Bayes theorem provides a principled way to calculate the posterior 

probability of each hypothesis given the training data, and can use it as the basis for 

a straightforward learning algorithm that calculates the probability for each 

possible hypothesis, then outputs the most probable. 

Brute-Force Bayes Concept Learning 

 
Consider the concept learning problem 

 Assume the learner considers some finite hypothesis space H defined over 

the instance space X, in which the task is to learn some target concept c : X 

→ {0,1}. 

 Learner is given some sequence of training examples ((x1, d1) . . . (xm, dm)) 

where xi is some instance from X and where di is the target value of xi (i.e., 

di = c(xi)). 

 The sequence of target values are written as D = (d1 . . . dm). 

 
We can design a straightforward concept learning algorithm to output the maximum 

a posteriori hypothesis, based on Bayes theorem, as follows: 

 
BRUTE-FORCE MAP LEARNING algorithm: 

 

1. For each hypothesis h in H, calculate the posterior probability 
 

2. Output the hypothesis hMAP with the highest posterior probability 
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In order specify a learning problem for the BRUTE-FORCE MAP LEARNING 

algorithm we must specify what values are to be used for P(h) and for P(D|h) ? 

 
Let’s choose P(h) and for P(D|h) to be consistent with the following assumptions: 

 The training data D is noise free (i.e., di = c(xi)) 

 The target concept c is contained in the hypothesis space H 

 Do not have a priori reason to believe that any hypothesis is more probable 

than any other. 

What values should we specify for P(h)? 

 Given no prior knowledge that one hypothesis is more likely than another, 

it is reasonable to assign the same prior probability to every hypothesis h in 

H. 

 Assume the target concept is contained in H and require that these prior 

probabilities sum to 1. 

 
What choice shall we make for P(D|h)? 

 P(D|h) is the probability of observing the target values D = (d1 . . .dm) for 

the fixed set of instances (x1 . . . xm), given a world in which hypothesis h 

holds 

 Since we assume noise-free training data, the probability of observing 

classification di given h is just 1 if di = h(xi) and 0 if di ≠ h(xi). Therefore, 

 
Given these choices for P(h) and for P(D|h) we now have a fully-defined problem 

for the above BRUTE-FORCE MAP LEARNING algorithm. 

 
Recalling Bayes theorem, we have 
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Consider the case where h is inconsistent with the training data D 

 

The posterior probability of a hypothesis inconsistent with D is zero 

 

Consider the case where h is consistent with D 

Where, VSH,D is the subset of hypotheses from H that are consistent with D 

 
To summarize, Bayes theorem implies that the posterior probability P(h|D) under our 

assumed P(h) and P(D|h) is 

 

 

MAXIMUM LIKELIHOOD AND LEAST-SQUARED ERROR HYPOTHESES 

 
Consider the problem of learning a continuous-valued target function such as 

neural network learning, linear regression, and polynomial curve fitting 

 
A straightforward Bayesian analysis will show that under certain assumptions any 

learning algorithm that minimizes the squared error between the output hypothesis 

predictions and the training data will output a maximum likelihood (ML) hypothesis 
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 Learner L considers an instance space X and a hypothesis space H 

consisting of some class of real-valued functions defined over X, i.e., (∀  h ∈  

H)* h : X → R+ and training examples of the form <xi,di> 

 The problem faced by L is to learn an unknown target function f : X → R 

 A set of m training examples is provided, where the target value of each 

example is corrupted by random noise drawn according to a Normal 

probability distribution with zero mean (di = f(xi) + ei) 

 Each training example is a pair of the form (xi ,di ) where di = f (xi ) + ei . 

– Here f(xi) is the noise-free value of the target function and ei is a 

random variable representing the noise. 

– It is assumed that the values of the ei are drawn independently and 

that they are distributed according to a Normal distribution with 

zero mean. 

 The task of the learner is to output a maximum likelihood hypothesis or a 

MAP hypothesis assuming all hypotheses are equally probable a priori. 

 
Using the definition of hML we have 

 

Assuming training examples are mutually independent given h, we can write 

P(D|h) as the product of the various (di|h) 

 

Given the noise ei obeys a Normal distribution with zero mean and unknown 

variance ζ
2
 , each di must also obey a Normal distribution around the true 

targetvalue f(xi). Because we are writing the expression for P(D|h), we assume h is 

the correct description of f. 
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Hence, µ = f(xi) = h(xi) 

 

 
 

Maximize the less complicated logarithm, which is justified because of the monotonicity 

of function p 

The first term in this expression is a constant independent of h, and can 

therefore be discarded, yielding 

 

Maximizing this negative quantity is equivalent to minimizing the 

corresponding positive quantity 
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Finally, discard constants that are independent of h. 

 

 
Thus, above equation shows that the maximum likelihood hypothesis hML is the one 

that minimizes the sum of the squared errors between the observed training values 

di and the hypothesis predictions h(xi) 

 

 

MAXIMUM LIKELIHOOD HYPOTHESES FOR PREDICTING PROBABILITIES 

 
 Consider the setting in which we wish to learn a nondeterministic 

(probabilistic) function f : X → ,0, 1-, which has two discrete output values. 

 We want a function approximator whose output is the probability that f(x) 

= 1. In other words, learn the target function f ` : X → *0, 1+ such that f ` (x) 

= P(f(x) = 1) 

 
How can we learn f ` using a neural network? 

 Use of brute force way would be to first collect the observed frequencies of 

1's and 0's for each possible value of x and to then train the neural network 

to output the target frequency for each x. 

                                                                                                                                                                                                                                                                                                                                                                                                      
What criterion should we optimize in                                                                                                                                  

order to find a maximum likelihood hypothesis for f' in this setting? 

 First obtain an expression for P(D|h) 

 Assume the training data D is of the form D = {(x1, d1) . . . (xm, dm)}, where di 

is the observed 0 or 1 value for f (xi). 

 Both xi and di as random variables, and assuming that each training 

example is drawn independently, we can write P(D|h) as 
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Applying                                                                                                                                                                                                                                                                                                                                                                                              

the product rule 

 

The probability P(di|h, xi) 
 

 
Re-express it in a more mathematically manipulable form, as 

 
Equation (4) to substitute for P(di |h, xi) in Equation (5) to obtain 

We write an expression for the maximum likelihood hypothesis 

 
 

The last term is a constant independent of h, so it can be dropped 

It easier to work with the log of the likelihood, yielding 
 
 

 
Equation (7) describes the quantity that must be maximized in order to obtain the 

maximum likelihood hypothesis in our current problem setting 

 



 
 

Faculty Name : Mrs Swapna                                                                                        Subject Name :ML 

 

The Evolution of Probabilities Associated with Hypotheses 

 
 Figure (a) all hypotheses have the same probability. 

 Figures (b) and (c), As training data accumulates, the posterior 

probability for inconsistent hypotheses becomes zero while the total 

probability summing to 1 is shared equally among the remaining 

consistent hypotheses. 
 

 

MAP Hypotheses and Consistent Learners 

 
 A learning algorithm is a consistent learner if it outputs a hypothesis that 

commits zero errors over the training examples. 

 Every consistent learner outputs a MAP hypothesis, if we assume a uniform 

prior probability distribution over H (P(hi) = P(hj) for all i, j), and 

deterministic, noise free training data (P(D|h) =1 if D and h are consistent, 

and 0 otherwise). 

 

Example: 

 FIND-S outputs a consistent hypothesis, it will output a MAP hypothesis 

under the probability distributions P(h) and P(D|h) defined above. 

 Are there other probability distributions for P(h) and P(D|h) under which 

FIND-S outputs MAP hypotheses? Yes. 
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 Because FIND-S outputs a maximally specific hypothesis from the version 

space, its output hypothesis will be a MAP hypothesis relative to any prior 

probability distribution that favors more specific hypotheses. 

 
Note 

 Bayesian framework is a way to characterize the behavior of learning algorithms 

 By identifying probability distributions P(h) and P(D|h) under which the 

output is a optimal hypothesis, implicit assumptions of the algorithm can 

be characterized (Inductive Bias) 

MINIMUM DESCRIPTION LENGTH PRINCIPLE 

 
 A Bayesian perspective on Occam’s razor 

 Motivated by interpreting the definition of hMAP in the light of basic 

concepts from information theory. 
 

which can be equivalently expressed in terms of maximizing the log2 

 

 
or alternatively, minimizing the negative of this quantity 

 
This equation (1) can be interpreted as a statement that short hypotheses are 

preferred, assuming a particular representation scheme for encoding hypotheses 

and data 

 

 -log2P(h): the description length of h under the optimal encoding for the 

hypothesis space H, LCH (h) = −log2P(h), where CH is the optimal code for 

hypothesis space H. 

 -log2P(D | h): the description length of the training data D given hypothesis 
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h, under the optimal encoding from the hypothesis space H: LCH (D|h) = 

−log2P(D| h) , where C D|h is the optimal code for describing data D 

assuming that both the sender and receiver know the hypothesis h. 

 Rewrite Equation (1) to show that hMAP is the hypothesis h that minimizes 

the sum given by the description length of the hypothesis plus the 

description length of the data given the hypothesis. 

 
Where, CH and CD|h are the optimal encodings for H and for D given h 

 

The Minimum Description Length (MDL) principle recommends choosing the 

hypothesis that minimizes the sum of these two description lengths of equ. 

 
Minimum Description Length principle: 

 
Where, codes C1 and C2 to represent the hypothesis and the data given the hypothesis 

 
The above analysis shows that if we choose C1 to be the optimal encoding of 

hypotheses CH, and if we choose C2 to be the optimal encoding CD|h, then  

hMDL = hMAP 

 
Bayes Optimal Classifier 

It is described using the Bayes Theorem that provides a principled way for calculating a 

conditional probability. It is also closely related to the Maximum a Posteriori: a probabilistic 

framework referred to as MAP that finds the most probable hypothesis for a training dataset. 

In practice, the Bayes Optimal Classifier is computationally expensive, if not intractable to 

calculate, and instead, simplifications such as the Gibbs algorithm and Naive Bayes can be used 

to approximate the outcome. 
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 Bayes Theorem provides a principled way for calculating conditional probabilities, called a 

posterior probability. 

 Maximum a Posteriori is a probabilistic framework that finds the most probable hypothesis that 

describes the training dataset. 

 

 Bayes Optimal Classifier is a probabilistic model that finds the most probable prediction using 

the training data and space of hypotheses to make a prediction for a new data instance. 

 

To develop some intuitions consider a hypothesis space containing three hypotheses, hl, h2, and 

h3. Suppose that the posterior probabilities of these hypotheses given the training data are .4, .3, 

and .3 respectively. Thus, hl is the MAP hypothesis. Suppose a new instance x is encountered, 

which is classified positive by hl, but negative by h2 and h3.  

Taking all hypotheses into account, the probability that x is positive is .4 (the probability 

associated with hi), and the probability that it is negative is therefore .6.  

The most probable classification (negative) in this case is different from the classification 

generated by the MAP hypothesis. In general, the most probable classification of the new 

instance is obtained by combining the predictions of all hypotheses, weighted by their posterior 

probabilities.  

If the possible classification of the new example can take on any value vj from some set V, then 

the probability P(vjlD) that the correct classification for the new instance is v;, is just 
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Two of the most commonly used simplifications use a sampling algorithm for 

hypotheses, such as Gibbs sampling, or to use the simplifying assumptions of the Naive 

Bayes classifier. 

1.Gibbs Algorithm. Randomly sample hypotheses biased on their posterior probability. 

 

2.Naive Bayes. Assume that variables in the input data are conditionally independent. 

 

 

1.Gibbs Algorithm 

 

Gibbs sampling (also called alternating conditional sampling) is a Markov Chain Monte  

Carlo  algorithm for high-dimensional data such as image processing and micro arrays.  
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It is called Monte Carlo because it draws samples  from specified probability 

distributions the Markov chain comes from the fact that each sample is dependent on the 

previous sample. Gibbs sampling is relatively easy to implement. However, it is less 

efficient than direct simulation from the distribution. 

 

An alternative, less optimal method is the Gibbs algorithm defined as follows: 

 1. Choose a hypothesis h from H at random, according to the posterior probability 

distribution over H.  

2. Use h to predict the classification of the next instance x.  

Given a new instance to classify, the Gibbs algorithm simply applies a hypothesis drawn 

at random according to the current posterior probability distribution. Surprisingly, it can 

be shown that under certain conditions the expected misclassification error for the 

Gibbs algorithm is at most twice the expected error of the Bayes optimal classifier 

 

2.Naive Bayes: 

 

Assume that variables in the input data are conditionally independent. 

o Naïve Bayes algorithm is a supervised learning algorithm, which is based on Bayes 

theorem and used for solving classification problems. 

o It is mainly used in text classification that includes a high-dimensional training dataset. 

o Naïve Bayes Classifier is one of the simple and most effective Classification algorithms 

which helps in building the fast machine learning models that can make quick 

predictions. 

o It is a probabilistic classifier, which means it predicts on the basis of the probability 

of an object. 

o Some popular examples of Naïve Bayes Algorithm are spam filtration, Sentimental 

analysis, and classifying articles. 

Working of Naïve Bayes' Classifier: 

Working of Naïve Bayes' Classifier can be understood with the help of the below example: 
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Suppose we have a dataset of weather conditions and corresponding target variable "Play". 

So using this dataset we need to decide that whether we should play or not on a particular day 

according to the weather conditions. So to solve this problem, we need to follow the below steps: 

1. Convert the given dataset into frequency tables. 

2. Generate Likelihood table by finding the probabilities of given features. 

3. Now, use Bayes theorem to calculate the posterior probability. 

Problem: If the weather is sunny, then the Player should play or not? 

Solution: To solve this, first consider the below dataset: 

 Outlook Play 

0 Rainy Yes 

1 Sunny Yes 

2 Overcast Yes 

3 Overcast Yes 

4 Sunny No 

5 Rainy Yes 

6 Sunny Yes 

7 Overcast Yes 

8 Rainy No 

9 Sunny No 

10 Sunny Yes 
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11 Rainy No 

12 Overcast Yes 

13 Overcast Yes 

 

Frequency table for the Weather Conditions: 

Weather Yes No 

Overcast 5 0 

Rainy 2 2 

Sunny 3 2 

Total 10 4 

Likelihood table weather condition: 

Weather No Yes  

Overcast 0 5 5/14= 0.35 

Rainy 2 2 4/14=0.29 

Sunny 2 3 5/14=0.35 

All 4/14=0.29 10/14=0.71  

Applying Bayes'theorem: 
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P(Yes|Sunny)= P(Sunny|Yes)*P(Yes)/P(Sunny) 

P(Sunny|Yes)= 3/10= 0.3 

P(Sunny)= 0.35 

P(Yes)=0.71 

P(Yes|Sunny) = 0.3*0.71/0.35= 0.60 

P(No|Sunny)= P(Sunny|No)*P(No)/P(Sunny) 

P(Sunny|NO)= 2/4=0.5 

P(No)= 0.29 

P(Sunny)= 0.35 

So P(No|Sunny)= 0.5*0.29/0.35 = 0.41 

So as we can see from the above calculation that P(Yes|Sunny)>P(No|Sunny) 

Hence on a Sunny day, Player can play the game. 

Applications of Naïve Bayes Classifier: 

o It is used for Credit Scoring. 

o It is used in medical data classification. 

o It is used in Text classification such as Spam filtering and Sentiment analysis. 

Navie Bayers Text Classification: 

 

                                   pVj   is  the  prior probablility given the data belows to that class  

                                     example : Target class : the data belongs to the class (y or no) or  (like or Dislike) 

P(a\vj)= Conditional probability or likelihood 
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8=Total number of words in 3 docid 1,2, 3=8 

6=Total number of unique words count like Chinese Beijing shanghai Tokyo japan maco 

3= total number of word in doc id 4 
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Bayesian Belief Network in artificial intelligence 

Bayesian belief network is key computer technology for dealing with probabilistic events and to 

solve a problem which has uncertainty. We can define a Bayesian network as: 

"A Bayesian network is a probabilistic graphical model which represents a set of variables and 

their conditional dependencies using a directed acyclic graph." 

It is also called a Bayes network, belief network, decision network, or Bayesian model. 

Real world applications are probabilistic in nature, and to represent the relationship between 

multiple events, we need a Bayesian network. It can also be used in various tasks 

including prediction, anomaly detection, diagnostics, automated insight, reasoning, time 

series prediction, and decision making under uncertainty. 
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Bayesian Network can be used for building models from data and experts opinions, and it 

consists of two parts: 

o Directed Acyclic Graph 

o Table of conditional probabilities. 

The generalized form of Bayesian network that represents and solve decision problems under 

uncertain knowledge is known as an Influence diagram. 

A Bayesian network graph is made up of nodes and Arcs (directed links), where: 

 
o Each node corresponds to the random variables, and a variable can 

be continuous or discrete. 

o Arc or directed arrows represent the causal relationship or conditional probabilities 

between random variables. These directed links or arrows connect the pair of nodes in the 
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graph. 

These links represent that one node directly influence the other node, and if there is no 

directed link that means that nodes are independent with each other 

o In the above diagram, A, B, C, and D are random variables represented by 

the nodes of the network graph. 

o If we are considering node B, which is connected with node A by a directed 

arrow, then node A is called the parent of Node B. 

o Node C is independent of node A. 

The Bayesian network has mainly two components: 

o Causal Component 

o Actual numbers 

Each node in the Bayesian network has condition probability distribution P(Xi |Parent(Xi) ), 

which determines the effect of the parent on that node. 

Explanation of Bayesian network: 

Let's understand the Bayesian network through an example by creating a directed acyclic graph: 

Example: Harry installed a new burglar alarm at his home to detect burglary. The alarm reliably 

responds at detecting a burglary but also responds for minor earthquakes. Harry has two 

neighbors David and Sophia, who have taken a responsibility to inform Harry at work when they 

hear the alarm. David always calls Harry when he hears the alarm, but sometimes he got 

confused with the phone ringing and calls at that time too. On the other hand, Sophia likes to 

listen to high music, so sometimes she misses to hear the alarm. Here we would like to compute 

the probability of Burglary Alarm. 

Problem: 

Calculate the probability that alarm has sounded, but there is neither a burglary, nor an 

earthquake occurred, and David and Sophia both called  

Solution: 
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o The Bayesian network for the above problem is given below. The network structure is 

showing that burglary and earthquake is the parent node of the alarm and directly 

affecting the probability of alarm's going off, but David and Sophia's calls depend on 

alarm probability. 

o The network is representing that our assumptions do not directly perceive the burglary 

and also do not notice the minor earthquake, and they also not confer before calling. 

o The conditional distributions for each node are given as conditional probabilities table 

List of all events occurring in this network: 

o Burglary (B) 

o Earthquake(E) 

o Alarm(A) 

o David Calls(D) 

o Sophia calls(S) 

 

 

P(B= True) = 0.002, which is the probability of burglary. 
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P(B= False)= 0.998, which is the probability of no burglary. 

P(E= True)= 0.001, which is the probability of a minor earthquake 

P(E= False)= 0.999, Which is the probability that an earthquake not occurred. 

We can provide the conditional probabilities as per the below tables: 

 

 

Conditional probability table for Alarm A: 

The Conditional probability of Alarm A depends on Burglar and earthquake: 

B E P(A= True) P(A= False) 

True True 0.94 0.06 

True False 0.95 0.04 

False True 0.31 0.69 

False False 0.001 0.999 

Conditional probability table for David Calls: 

The Conditional probability of David that he will call depends on the probability of Alarm. 

A P(D= True) P(D= False) 

True 0.91 0.09 

False 0.05 0.95 

Conditional probability table for Sophia Calls: 

The Conditional probability of Sophia that she calls is depending on its Parent Node "Alarm." 

A P(S= True) P(S= False) 

True 0.75 0.25 
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False 0.02 0.98 

From the formula of joint distribution, we can write the problem statement in the form of probability distribution: 

P(S, D, A, ¬B, ¬E) = P (S|A) *P (D|A) *P (¬B) *P (¬E). 

= 0.75* 0.91* 0.001* 0.998*0.999 

= 0.00068045. 

---------------------------------------------------------------------------------------------------- 

Expectation-Maximization Algorithm 
 

Expectation-Maximization algorithm can be used for the latent variables (variables that are 
not directly observable and are actually inferred from the values of the other observed 

variables) too in order to predict their values with the condition that the general form of 

probability distribution governing those latent variables is known to us. This algorithm is 

actually at the base of many unsupervised clustering algorithms in the field of machine 

learning. 

It was explained, proposed and given its name in a paper published in 1977 by Arthur 

Dempster, Nan Laird, and Donald Rubin. It is used to find the local maximum likelihood 

parameters of a statistical model in the cases where latent variables are involved and the data 

is missing or incomplete. 
  
Algorithm: 

1. Given a set of incomplete data, consider a set of starting parameters. 

2. Expectation step (E – step): Using the observed available data of the dataset, estimate 

(guess) the values of the missing data. 

3. Maximization step (M – step): Complete data generated after the expectation (E) step is 

used in order to update the parameters. 

4. Repeat step 2 and step 3 until convergence. 
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The essence of Expectation-Maximization algorithm is to use the available observed data of the dataset to 
estimate the missing data and then using that data to update the values of the parameters. Let us 
understand the EM algorithm in detail. 

 Initially, a set of initial values of the parameters are considered. A set of incomplete observed data is 
given to the system with the assumption that the observed data comes from a specific model. 

 The next step is known as “Expectation” – step or E-step. In this step, we use the observed data in order 
to estimate or guess the values of the missing or incomplete data. It is basically used to update the 
variables. 

 The next step is known as “Maximization”-step or M-step. In this step, we use the complete data 
generated in the preceding “Expectation” – step in order to update the values of the parameters. It is 
basically used to update the hypothesis. 

 Now, in the fourth step, it is checked whether the values are converging or not, if yes, then stop otherwise 
repeat step-2 and step-3 i.e. “Expectation” – step and “Maximization” – step until the convergence occurs. 
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Flow chart for EM algorithm – 

 
Usage of EM algorithm – 

 It can be used to fill the missing data in a sample. 

 It can be used as the basis of unsupervised learning of clusters. 

 It can be used for the purpose of estimating the parameters of Hidden Markov Model (HMM). 

 It can be used for discovering the values of latent variables. 
Advantages of EM algorithm – 

 It is always guaranteed that likelihood will increase with each iteration. 

 The E-step and M-step are often pretty easy for many problems in terms of implementation. 
Disadvantages of EM algorithm – 

 It has slow convergence. 

 It makes convergence to the local optima only. 
. 

Probably Approximately Correct (PAC) framework, we identify classes of hypotheses that can and 
cannot be learned from a polynomial number of training examples and we define a natural measure of 
complexity for hypothesis spaces that allows bounding the number of training examples required for 
learning. Within the mistake bound framework, we examine the number of training errors that will be 
made by a learner before it determines the correct hypothesis 
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we will be chiefly concerned with questions such as how many training examples are sufficient to 
successfully learn the target function, and how many mistakes will the learner make before succeeding. 
As we shall see, it is possible to set quantitative bounds on these measures, depending on attributes of 
the learning problem such as:   

1) the size or complexity of the hypothesis space considered by the learner   
2) the accuracy to which the target concept must be approximated  
3) the probability that the learner will output a successful hypothesis   

4) the manner in which training examples are presented to the learner 

Goal of PAC is to answer questions such as:  

1.Sample complexity. How many training examples are needed for a learner to converge (with 

high probability) to a successful hypothesis?  

2. Computational complexity. How much computational effort is needed for a learner to 

converge (with high probability) to a successful hypothesis? 

3. Mistake bound. How many training examples will the learner misclassify before converging to 

a successful hypothesis? 

Error of a Hypothesis 

Acccuracy is based on Error Levels in the model  

This is made clear by distinguishing between the true error of a model and the estimated or 

sample error. 

 Sample Error. Estimate of error calculated on a sample data. 

 

 The sample error (errors(h)) of hypothesis h with respect to target function f and data 

sample S is 

 

 
 

Where n is the number of examples in S, and the quantity δ(f(x), h(x)) is 1 if error  is 

identified 
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 if f (x) ≠ h(x), and 0 no error  identified. 

Suppose the data sample S contains n = 40 examples and that hypothesis h 

commits  r = 12 errors misclassify or mismatch over this data. 

 The sample error is errors(h) = r/n = 12/40 = 0.30 

 

 True Error: Estimation of Error over entire distribution  

 The true error (errorD(h)) of hypothesis h with respect to target function f and 

distribution D, is the probability that h will misclassify an instance drawn at random 

according to D. 

refer to unit 2 calculation of true error through confidence intervals 

 

Confidence Intervals for Discrete-Valued Hypotheses 

Suppose we wish to estimate the true error for some discrete valued hypothesis h, based on its 

observed sample error over a sample S, where 

 The sample S contains n examples drawn independent of one another, and independent of h, 

according to the probability distribution D 

 n ≥ 30 

 Hypothesis h commits r errors over these n examples (i.e., errors (h) = r/n). 

 

Under these conditions, statistical theory allows to make the following assertions: 

2. Given no other information, the most probable value of errorD (h) is errors(h) 

3. With approximately 95% probability, the true error errorD (h) lies in the interval 
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Example: 

 

Suppose the data sample S contains n = 40 examples and that hypothesis h commits r = 12 

errors over this data. 

 The sample error is errors(h) = r/n = 12/40 = 0.30 

 Given no other information, true error is errorD (h) = errors(h), i.e., errorD (h) = 0.30 

 With the 95% confidence interval estimate for errorD (h). 

= 0.30 ± (1.96 * 0.07) = 0.30 ± 0.14 

 

True Error vs Sample Error 

True Error Sample Error 

The true error represents the 

probability that a random sample 

from the population is 

misclassified. 

Sample Error represents the fraction of the sample which 

is misclassified. 

True error is used to estimate the 

error of the population. Sample Error is used to estimate the errors of the sample. 

True error is difficult to calculate. 

It is estimated by the confidence 

interval range on the basis of 

Sample error. 

Sample Error is easy to calculate. You just have to 

calculate the fraction of the sample that is misclassified. 

The true error can be caused by 

poor data collection methods, 

Sampling error can be of type population-specific error 

(wrong people to survey), selection error, sample-frame 
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True Error Sample Error 

selection bias, or non-response 

bias. 

error (wrong frame window selected for sample), and 

non-response error (when respondent failed to respond). 

 

PROBABLY LEARNING AN APPROXIMATELY CORRECT HYPOTHESIS 

We begin by specifying the problem setting that defines the PAC learning model, then consider the 

questions of how many training examples and how much computation are required in order to learn 

various classes of target functions within this PAC model. 

PAC-learnability is largely determined by the number of training examples required by the learner. The 

growth in the number of required training examples with problem size, called the sample complexity of 

the learning problem 

a general bound on the sample complexity for a very broad class of learners, called consistent learners. 

A learner is consistent if it outputs hypotheses that perfectly fit the training data. 

The learner L considers some set H of possible hypotheses when attempting to learn the target concept. 

For example, H might be the set of all hypotheses describable by conjunctions of the attributes. After 

observing a sequence of training examples of the target concept c, L must output some hypothesis h 

from H, which is its estimate of c.  

To be fair, we evaluate the success of L by the performance of h over new instances drawn randomly 

from X according to D(Traning data), the same probability distribution used to generate the training data 

Error of a Hypothesis 

Figure 7.1 shows this definition of error in graphical form. The concepts c and h are depicted by the sets 

of instances within X that they label as positive. The error of h with respect to c is the probability that a 

randomly drawn instance will fall into the region where h and c disagree  
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PAC Learnability 

Our aim is to characterize classes of target concepts that can be reliably learned from a reasonable 

number of randomly drawn training examples and a reasonable amount of computation 

First, unless we provide training examples corresponding to every possible instance in X (an unrealistic 

assumption), there may be multiple hypotheses consistent with the provided training examples, and the 

learner cannot be certain to pick the one corresponding to the target concept. Second, given that the 

training examples are drawn randomly, there will always be some nonzero probability that the training 

examples encountered by the learner will be misleading 

To accommodate these two difficulties, we weaken our demands on the learner in two ways. First, we 

will not require that the learner output a zero error hypothesis-we will require only that its error be 

bounded by some constant, c, that can be made arbitrarily small. 
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SAMPLE COMPLEXITY FOR FINITE HYPOTHESIS SPACES 

The growth in the number of required training examples with problem size, called the sample 

complexity of the learning problem 

we present a general bound on the sample complexity for a very broad class of learners, called 

consistent learners. A learner is consistent if it outputs hypotheses that perfectly fit the training 

data  

Find s Algorithm –biased Hypothesis 

Candidate Algorithm –Unbiased hypothesis Restricted  hypothesis 

DecisonTree – preference Bias 

The significance of the version space here is that every consistent learner outputs a hypothesis 

belonging to the version space, regardless of the instance space X, hypothesis space H, or 

training data D. The reason is simply that by definition the version space VSH,D contains every 
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consistent hypothesis in H. Therefore, to bound the number of examples needed by any 

consistent learner 
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SAMPLE COMPLEXITY FOR INFINITE HYPOTHESIS SPACES 

 

Sample Complexity Results for Infinite Hypothesis Spaces can be explained with concept of 

shattering coefficient 

The Shattering Coefficient Let C be a concept class over an instance space X, i.e. a set of 

functions functions from X to {0, 1} (where both C and X may be infinite).  

Shattering a Set of Instances 
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The Vapnik-Chervonenkis Dimension 
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The VC dimension quantifies the complexity of a hypothesis space, e.g. the models that could be 

fit given a representation and learning 

The ability to shatter a set of instances is closely related to the inductive bias of a hypothesis 

space. Algorithm 

 Shatter or a shattered set in the case of a dataset, means points in the feature space can be 

selected or separated from each other using hypotheses in the space such that the labels of 

examples in the separate groups are correct  

 

 

 

THE MISTAKE BOUND MODEL OF LEARNING 

the mistake bound model of learning, in which the learner is evaluated by the total number of mistakes 

it makes before it converges to the correct hypothesis. As in the PAC setting, we assume the learner 

receives a sequence of training examples.  

However, here we demand that upon receiving each example x, the learner must predict the target 

value c(x), before it is shown the correct target value by the trainer. The question considered is "How 

many mistakes will the learner make in its predictions before it learns the target concept?' This question 

is significant in practical settings where learning must be done while the system is in actual use, rather 

than during some off-line training stage.  

For example, if the system is to learn to predict which credit card purchases should be approved and 

which are fraudulent, based on data collected during use, then we are interested in minimizing the total 

number of mistakes it will make before converging to the correct target function. Here the total number 

of mistakes can be even more important than the total number of training examples.  

This mistake bound learning problem may be studied in various specific settings. For example, we might 

count the number of mistakes made before PAC learning the target concept. In the examples below, we 
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consider instead the number of mistakes made before learning the target concept exactly. Learning the 

target concept exactly means converging to a hypothesis such that (Vx)h(x) = c(x). 

 

 

Mistake Bound for the FIND-S Algorithm 

To illustrate, consider again the hypothesis space H consisting of conjunctions of up to n boolean literals 

l1 , l2…ln, and their negations Recall the FIND-S algorithm , which incrementally computes the maximally 

specific hypothesis consistent with the training examples. A straightforward implementation of FIND-S 

for the hypothesis space H is as follow 

 

 

 

FIND-S converges in the limit to a hypothesis that makes no errors, provided C, H and provided the 

training data is noise-free. FIND-S begins with the most specific hypothesis (which classifies every 

instance a negative example), then incrementally generalizes this hypothesis as needed to cover 

observed positive training examples. For the hypothesis representation used here, this generalization 

step consists of deleting unsatisfied literals. 

Therefore, to calculate the number of mistakes it will make, we need only count the number of mistakes 

it will make misclassifying truly positive examples as negative. 

Therefore, to calculate the number of mistakes it will make, we need only count the number of mistakes 

it will make misclassifying truly positive examples as negative.  

How many such mistakes can occur before FIND-S learns c exactly? Consider the first positive example 

encountered by FIND-S. The learner will certainly make a mistake classifying this example, because its 

initial hypothesis labels every instance negative. However, the result will be that 1/ 2n terms in its initial 

hypothesis will be eliminated, leaving only n terms. For each subsequent positive example that is 

mistakenly classified by the current hypothesis, at least one more of the remaining n terms must be 

eliminated from the hypothesis.  
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Therefore, the total number of mistakes can be at most n + 1. This number of mistakes will be required 

in the worst case, corresponding to learning the most general possible target concept . 

--------------------------------------------------------------------------------------------------------------------------------------- 

  

 

INSTANCE BASED LEARNING 

 Instance-based learning methods such as nearest neighbor and locally weighted 

regression are conceptually straightforward approaches to approximating real-valued or 

discrete-valued target functions. 

 Learning in these algorithms consists of simply storing the presented training data. 

When a new query instance is encountered, a set of similar related instances is retrieved 

from memory and used to classify the new query instance 

 Instance-based approaches can construct a different approximation to the target function 

for each distinct query instance that must be classified 

 

The Machine Learning systems which are categorized as instance-based learning are the 

systems that learn the training examples by heart and then generalizes to new instances based 

on some similarity measure. It is called instance-based because it builds the hypotheses from 

the training instances. It is also known as memory-based learning or lazy-learning. The time 

complexity of this algorithm depends upon the size of training data. 

k- NEAREST NEIGHBOR LEARNING 
 

o K-Nearest Neighbour is one of the simplest Machine Learning algorithms based on 

Supervised Learning technique. 

o K-NN algorithm assumes the similarity between the new case/data and available cases 

and put the new case into the category that is most similar to the available categories. 

o K-NN algorithm stores all the available data and classifies a new data point based on the 

similarity. This means when new data appears then it can be easily classified into a well 

suite category by using K- NN algorithm. 

o K-NN algorithm can be used for Regression as well as for Classification but mostly it is 

used for the Classification problems. 

 The most basic instance-based method is the K- Nearest Neighbor Learning. This 

algorithm assumes all instances correspond to points in the n-dimensional space R
n
. 

https://www.geeksforgeeks.org/machine-learning/


 
 

Faculty Name : Mrs Swapna                                                                                        Subject Name :ML 

 

 The nearest neighbors of an instance are defined in terms of the standard Euclidean 

distance. 

 Let an arbitrary instance x be described by the feature vector 

((a1(x), a2(x), ………, an(x)) 

Where, ar(x) denotes the value of the r
th

 attribute of instance x. 

 

 Then the distance between two instances xi and xj is defined to be d(xi , 

xj ) Where, 

 In nearest-neighbor learning the target function may be either discrete-valued 

or real- valued. 

 
Let us first consider learning discrete-valued target functions of 

the form Where, V is the finite set {v1, . . . vs } 

 The  value  � (xq)  returned  by  this  algorithm  as  its  estimate  of  f(xq)  is  just  the  

most common value of f among the k training examples nearest to xq. 

 If k = 1, then the 1- Nearest Neighbor algorithm assigns to � (xq) the value f(xi). 

Where xi is the training instance nearest to xq. 

 For larger values of k, the algorithm assigns the most common value among the k 

nearest training examples. 

 
 Below figure illustrates the operation of the k-Nearest Neighbor algorithm for the 

case where the instances are points in a two-dimensional space and where the 

target function is Boolean valued. 
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 The positive and negative training examples are shown by “+” and “-” 

respectively. A query point xq is shown as well. 

 The 1-Nearest Neighbor algorithm classifies xq as a positive example in this 

figure, whereas the 5-Nearest Neighbor algorithm classifies it as a negative 

example. 

 

 Below figure shows the shape of this decision surface induced by 1- Nearest 

Neighbor over the entire instance space. The decision surface is a combination of 

convex polyhedra surrounding each of the training examples. 

 
 For every training example, the polyhedron indicates the set of query points 

whose classification will be completely determined by that training example. 

Query points outside the polyhedron are closer to some other training 

example. This kind of diagram is often called the Voronoi diagram of the set of 

training example 

 

 
Example of K Nearest 
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Advantages of KNN Algorithm: 

o It is simple to implement. 

o It is robust to the noisy training data 

o It can be more effective if the training data is large. 

Disadvantages of KNN Algorithm: 

o Always needs to determine the value of K which may be complex some time. 

o The computation cost is high because of calculating the distance between the data points for all the training 

samples. 
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Example of knn Problem  
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The k- Nearest Neighbor algorithm for approximation a discrete-valued target function 
is 

given below: 
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The K- Nearest Neighbor algorithm for approximation a real-valued target 

function is given below  
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Distance-Weighted Nearest Neighbor Algorithm for approximation a discrete-valued 

target functions 
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o  
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Distance-Weighted Nearest Neighbor Algorithm for approximation a Real-valued target 

functions 
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Regression Analysis in Machine learning 

Regression analysis is a statistical method to model the relationship between a dependent (target) and independent 

(predictor) variables with one or more independent variables. More specifically, Regression analysis helps us to 

understand how the value of the dependent variable is changing corresponding to an independent variable when 

other independent variables are held fixed. It predicts continuous/real values such as temperature, age, salary, 

price, etc. 

We can understand the concept of regression analysis using the below example: 

Example: Suppose there is a marketing company A, who does various advertisement every year and get sales on that. 

The below list shows the advertisement made by the company in the last 5 years and the corresponding sales: 

 

Now, the company wants to do the advertisement of $200 in the year 2019 and wants to know the prediction 

about the sales for this year. So to solve such type of prediction problems in machine learning, we need regression 

analysis. 

Linear Regression in Machine Learning 

Linear regression is one of the easiest and most popular Machine Learning algorithms. It is a statistical method that is 

used for predictive analysis. Linear regression makes predictions for continuous/real or numeric variables such 

as sales, salary, age, product price, etc. 
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Linear regression algorithm shows a linear relationship between a dependent (y) and one or more independent (x) 

variables, hence called as linear regression. Since linear regression shows the linear relationship, which means it finds 

how the value of the dependent variable is changing according to the value of the independent variable. 

The linear regression model provides a sloped straight line representing the relationship between the variables. 

Consider the below image: 

Mathematically, we can represent a linear regression as: 

y= a0+a1x+ ε 

Y= Dependent Variable (Target Variable) 

X= Independent Variable (predictor Variable) 

a0= intercept of the line (Gives an additional degree of freedom) 

a1 = Linear regression coefficient (scale factor to each input value). 

ε = random error 

The values for x and y variables are training datasets for Linear Regression model representation. 

 

 

2.6M 

Obi-Wan Is Coming to ‘ 

for Linear Regression, we use the Mean Squared Error (MSE) cost function, which is the average of squared error 

occurred between the predicted values and actual values. It can be written as: 

For the above linear equation, MSE can be calculated as: 
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Where, 

N=Total number of observation 

Yi = Actual value 

(a1xi+a0)= Predicted value. 
 

1.LOCALLY WEIGHTED REGRESSION 

 
 The phrase "locally weighted regression" is called local because the function is 

approximated based only on data near the query point, weighted because the 

contribution of each training example is weighted by its distance from the 

query point, and regression because this is the term used widely in the 

statistical learning community for the problem of approximating real-valued 

functions. 

 

 Given a new query instance xq, the general approach in locally weighted 

regression is to construct an approximation 𝑓  that fits the training examples in 

the neighborhood surrounding xq. This approximation is then used to calculate 

the value 𝑓 (xq), which is output as the estimated target value for the query 

instance. 

 Consider locally weighted regression in which the target function f is 

approximated near xq using a linear function of the form 

Where, ai(x) denotes the value of the i
th

 attribute of the instance x 

 
 Derived methods are used to choose weights that minimize the squared error 

summed over the set D of training examples using gradient descent 

 

Which led us to the gradient descent training rule 
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Where, η is a constant learning rate 

 
Need to modify this procedure to derive a local approximation rather than a global one. 

The simple way is to redefine 

 

 

 
 

2.Radial basis functions 
 

A radial basis function network is a type of supervised artificial neural network that uses 

supervised machine learning (ML) to function as a nonlinear classifier 

A radial basis function network is also known as a radial basis network. 

 

The radial basis function network uses radial basis functions as its activation functions. Like 

other kinds of neural networks, radial basis function networks have input layers, hidden layers 

and output layers. However, radial basis function networks often also include a nonlinear 

activation function of some kind. Output weights can be trained using gradient descent. 
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3.Case-based reasoning (CBR)  
 
Case-based reasoning (CBR) is an experience-based approach to solving new problems by adapting 
previously successful solutions to similar problems. Addressing memory, learning, planning and problem 
solving, CBR provides a foundation for a new technology of intelligent computer systems that can solve 
problems and adapt to new situations.  In CBR, the “intelligent” reuse of knowledge from already-solved 
problems 

Four step process for CBR 

In general, the case-based reasoning process entails: 

1. Retrieve- Gathering from memory an experience closest to the current problem. 

2. Reuse- Suggesting a solution based on the experience and adapting it to meet the demands of the 

new situation. 

3. Revise- Evaluating the use of the solution in the new context. 

4. Retain- Storing this new problem-solving method in the memory system. 
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Advantages and disadvantages of CBR 

 

 

On the plus side, remembering past experiences helps learners avoid repeating previous mistakes, and 

the reasoned can discern what features of a problem are significant and focus on them. 

 
On the negative side, critics claim that the main premise of CBR is based on anecdotal evidence and that 
adapting the elements of one case to another may be complex and potentially lead to inaccuracies 
 
 

 

 

REMARKS ON LAZY AND EAGER LEARNING 
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Lazy learner: 

1. Just store Data set without learning from it 

2. Start classifying data when it receive Test data 

3. So it takes less time learning and more time classifying data 

 

 

Eager learner: 

1. When it receive data set it starts classifying (learning) 

2. Then it does not wait for test data to learn 

3. So it takes long time learning and less time classifying data 

 

Lazy : K - Nearest Neighbour, Case - Based Reasoning 

Eager : Decision Tree, Naive Bayes, Artificial Neural Networks 
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Unit 4 

Genetic Algorithms 

 

Genetic Algorithms(GAs) are adaptive heuristic search algorithms that belong to the larger part of 

evolutionary algorithms. Genetic algorithms are based on the ideas of natural selection and genetics. 

These are intelligent exploitation of random search provided with historical data to direct the search 

into the region of better performance in solution space. They are commonly used to generate high-

quality solutions for optimization problems and search problems. 

Genetic algorithms simulate the process of natural selection which means those species who can 

adapt to changes in their environment are able to survive and reproduce and go to next generation. In 

simple words, they simulate “survival of the fittest” among individual of consecutive generation for 

solving a problem. Each generation consist of a population of individuals and each individual 

represents a point in search space and possible solution. Each individual is represented as a string of 

character/integer/float/bits. This string is analogous to the Chromosome. 

Five phases are considered in a genetic algorithm. 

• Initial population 

• Fitness function 

• Selection 

• Crossover 

• Mutation 

• The process begins with a set of individuals which is called a Population. Each individual is a 

solution to the problem you want to solve. 

• An individual is characterized by a set of parameters (variables) known as Genes. Genes are 

joined into a string to form a Chromosome (solution). 

• In a genetic algorithm, the set of genes of an individual is represented using a string, in terms of 

an alphabet. Usually, binary values are used (string of 1s and 0s). We say that we encode the 

genes in a chromosome 

• The fitness function determines how fit an individual is (the ability of an individual to compete 

with other individuals). It gives a fitness score to each individual. The probability that an 

individual will be selected for reproduction is based on its fitness score. 

Selection 
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• The idea of selection phase is to select the fittest individuals and let them pass their genes to 

the next generation. 

• Two pairs of individuals (parents) are selected based on their fitness scores. Individuals with 

high fitness have more chance to be selected for reproduction. 

Crossover 

• Crossover is the most significant phase in a genetic algorithm. For each pair of parents to be 

mated, a crossover point is chosen at random from within the genes. 

Mutation 

• In certain new offspring formed, some of their genes can be subjected to a mutation with a low 

random probability. This implies that some of the bits in the bit string can be flipped. 
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Offspring are created by exchanging the genes of parents among themselves until the crossover point is 

reached. 
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The new offspring are added to the population. 

 

 

 

In certain new offspring formed, some of their genes can be subjected to a mutation with a low random 

probability. This implies that some of the bits in the bit string can be flipped. 

 

Termination 

The algorithm terminates if the population has converged (does not produce offspring which are 

significantly different from the previous generation). Then it is said that the genetic algorithm has 

provided a set of solutions to our problem. 
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Application areas 

Genetic algorithms are applied in the following fields: 

 Transport: Genetic algorithms are used in the traveling salesman problem to develop transport 

plans that reduce the cost of travel and the time taken. They are also used to develop an efficient 

way of delivering products. 

 DNA Analysis: They are used in DNA analysis to establish the DNA structure using 

spectrometric information. 

 Multimodal Optimization: They are used to provide multiple optimum solutions in multimodal 

optimization problems. 

 Aircraft Design: They are used to develop parametric aircraft designs. The parameters of the 

aircraft are modified and upgraded to provide better designs. 

 Economics: They are used in economics to describe various models such as the game theory, 

asset pricing, and schedule optimization. 

 

Advantages of Genetic Algorithms 

 Parallelism 

 A larger set of solution space 

 Requires less information 

 Provides multiple optimal solutions 

 Probabilistic in nature 

 Genetic representations using chromosomes 

Disadvantages of Genetic Algorithms 

 Computational complexity 

Hypothesis Search space 

 The population of individuals are maintained within search space. Each individual represents a 

solution in search space for given problem. Each individual is coded as a finite length vector 
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(analogous to chromosome) of components. These variable components are analogous to Genes. Thus 

a chromosome (individual) is composed of several genes (variable components).  

 

 

Genetic Programming Example 

 

. 
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Models of evolution and learning proposed by 2 authors 

Lamarckian Evolution Theory: 

The Lamarckian theory states the characteristic individual acquire during their lifetime pass them to 

their children. This theory is named after French biologist Jean Baptiste Lamarck. According to 

Lamarck‟s theory, learning is an important part of the evolution of species(or for our purpose in the 

Evolutionary algorithm). This theory is discredited in a biological context but can be used in genetic 

algorithms in machine learning. 

Baldwin Effect: 

Baldwin proposed that individual learning can explain evolutionary phenomena that appear to require 

Lamarckian inheritance of acquired characteristics. The ability of individuals to learn can guide the 

evolutionary process. In effect, learning smooths the fitness landscape, thus facilitating evolution. 
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 Baldwin Effect is first demonstrated by Hinton and Nolan in the context of machine learning in 1987. 

They take simple Neural Networks (NNs). In one experiment they take NNs of fixed weights while 

other NNs set to trainable. They concluded that: 

 When there is no individual learning, the population(collection of NNs) failed to improve over 

time. 

 When learning is applied in early stages, the population contains many individuals with many 

trainable weights, but in later stages, it achieved high fitness with the number of trainable weights 

decreases in individuals 

 Parallelizing Genetic Algorithms 

 parallel genetic algorithm is such an algorithm that uses multiple genetic algorithms to solve a 

single task . All these algorithms try to solve the same task and after they‟ve completed their job, 

the best individual of every algorithm is selected, then the best of them is selected, and this is the 

solution to a problem. This is one of the most popular approach to parallel genetic algorithms, 

even though there are others. This approach is often called „island model‟ because populations are 

isolated from each other, like real-life creature populations may be isolated living on different 

islands. Image 1 illustrates that. 

  

 

 

These genetic algorithms do not depend on each other, as a result, they can run in parallel, taking 

advantage of a multicore CPU. Each algorithm has its own set of individual, as a result these individuals 

may differ from individuals of another algorithm, because they have different mutation/crossover history. 
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Let‟s illustrate this with an example. Say we have three independent genetic algorithms and we want to 

crossover them in pairs. We take the first algorithm and randomly select the second element of a pair. So, 

we create as much pairs as many algorithms we have, in each pair the first element is chosen sequentially, 

and the second one is random. Then we perform crossover on populations of these two algorithms taking 

individuals from both of them. We pick individuals for crossover in such a way, that individuals from 

different algorithms are crossed over together. We use crossover mechanisms that are used by the first 

algorithm of a pair and this algorithm receives all of the individuals that were created as a result of a 

crossover; the second algorithm of a pair is simply a donor that provides its individuals. Therefore, each 

algorithm receives new individuals when it is the first element of a pair. If a crossover algorithm requires 

more than two individuals, additional individuals may be taken from any of the algorithms of a pair, it is 

only recommended that no algorithm dominate here 

A parallel genetic algorithm may take a little more time than a non-parallel one, that is because is uses 

several computation threads which, in turn, cause the Operation System to perform context switching 

more frequently 

Distributed genetic algorithm 

Distributed genetic algorithm is actually a parallel genetic algorithm that has its independent algorithms 

running on separate machines. Moreover, in this case each of these algorithms may be in turn a parallel 

genetic algorithm! Distributed genetic algorithm also implements the „island model‟ and each „island‟ is 

even more isolated from others. If each machine runs a parallel genetic algorithm we may call this as 

„archipelago model‟, because we have groups of islands. It actually does not matter what a single genetic 

algorithm is, because distributed genetic algorithm is about having multiple machines running 

independent genetic algorithms in order to solve the same task. Image 2 illustrates this. 
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Distributed genetic algorithm may also help when we have to create many individuals in order to observe 

the entire domain, but it is not possible to store all of them in memory of a single machine. 

When we were discussing parallel genetic algorithm we introduced the „crossover between algorithms‟ 

term. Distributed genetic algorithm enables us to perform crossover between separate machines 

In case of distributed genetic algorithm, we have a kind of „master mind‟ that controls the overall 

progress and coordinates these machines. It also controls crossover between machines, selecting how 

machines will be paired together to perform crossover. In general, process is the same as in case of 

parallel genetic algorithm, except that individuals are moved over the network from one machine to 

another.   

 

Sequential Covering Algorithm 

Sequential Covering is a popular algorithm based on Rule-Based Classification used for learning a 

disjunctive set of rules. The basic idea here is to learn one rule, remove the data that it covers, then 

repeat the same process. In this process, In this way, it covers all the rules involved with it in a 

sequential manner during the training phase.  

The Sequential Learning algorithm takes care of to some extent, the low coverage problem in the 

Learn-One-Rule algorithm covering all the rules in a sequential manner.  

Working on the Algorithm: 
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The algorithm involves a set of „ordered rules‟ or „list of decisions‟ to be made.   

Step 1 – create an empty decision list, ‘R’. 

Step 2 – ‘Learn-One-Rule’ Algorithm 

Step 2.a – if all training examples ∈ class ‘y’, then it’s classified as positive example. 

Step 2.b – else if all training examples ∉ class ‘y’, then it’s classified as negative example. 

Step 3 – The rule becomes ‘desirable’ when it covers a majority of the positive examples. 

Step 4 – When this rule is obtained, delete all the training data associated with that rule. 

(i.e. when the rule is applied to the dataset, it covers most of the training data, and has to be removed)  

Step 5 – The new rule is added to the bottom of decision list, ‘R’. (Fig.3) 

 

Below, is a visual representation describing the working of the algorithm.  
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fig 4: Visual Representation of working of the algorithm 

 Let us understand step by step how the algorithm is working in the example shown in Fig.4. 

 First, we created an empty decision list. During Step 1, we see that there are three sets of positive 

examples present in the dataset. So, as per the algorithm, we consider the one with maximum no of 

positive example. (6, as shown in Step 1 of Fig 4) 

 Once we cover these 6 positive examples, we get our first rule R1, which is then pushed into the 

decision list and those positive examples are removed from the dataset. (as shown in Step 2 of Fig 

4) 

 Now, we take the next majority of positive examples (5, as shown in Step 2 of Fig 4) and follow the 

same process until we get rule R2. (Same for R3) 

 In the end, we obtain our final decision list with all the desirable rules. 

Propositional logic: 

• Propositional logic (PL) is the simplest form of logic where all the statements are made by 

propositions. A proposition is a declarative statement which is either true or false. It is a 

Propositional logic is also called Boolean logic as it works on 0 and 1. 

• In propositional logic, we use symbolic variables to represent the logic, and we can use any 

symbol for a representing a proposition, such A, B, C, P, Q, R, etc. 

• Propositions can be either true or false, but it cannot be both. 

• Propositional logic consists of an object, relations or function, and logical connectives. 

• These connectives are also called logical operators. 

• The propositions and connectives are the basic elements of the propositional logic. 
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• Connectives can be said as a logical operator which connects two sentences. 

• A proposition formula which is always true is called tautology, and it is also called a valid 

sentence. 

• A proposition formula which is always false is called Contradiction. 

• A proposition formula which has both true and false values is called 

• Statements which are questions, commands, or opinions are not propositions such as "Where is 

Rohini", "How are you", "What is your name", are not propositions. 

• technique of knowledge representation in logical and mathematical form. 

• Syntax of propositional logic: 

• The syntax of propositional logic defines the allowable sentences for the knowledge 

representation. There are two types of Propositions: 

• Atomic Propositions  

• Compound propositions  

• Atomic Proposition: Atomic propositions are the simple propositions. It consists of a single 

proposition symbol. These are the sentences which must be either true or false. 

• Example:  

• a) 2+2 is 4, it is an atomic proposition as it is a true fact.   

• b) "The Sun is cold" is also a proposition as it is a false fact.    

• Compound proposition: Compound propositions are constructed by combining simpler or 

atomic propositions, using parenthesis and logical connectives. 

• Example:  

• a) "It is raining today, and street is wet."   

• b) "Ankit is a doctor, and his clinic is in Mumbai."    

• Limitations of Propositional logic: 

• We cannot represent relations like ALL, some, or none with propositional logic. Example: 

• All the girls are intelligent.  

• Some apples are sweet.  

• Propositional logic has limited expressive power. 

• In propositional logic, we cannot describe statements in terms of their properties or logical 

relationships. 

First-Order Logic 
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• In the topic of Propositional logic, we have seen that how to represent statements using 

propositional logic. But unfortunately, in propositional logic, we can only represent the facts, 

which are either true or false. PL is not sufficient to represent the complex sentences or natural 

language statements. The propositional logic has very limited expressive power. Consider the 

following sentence, which we cannot represent using PL logic. 

• "Some humans are intelligent", or  

• "Sachin likes cricket."  

• To represent the above statements, PL logic is not sufficient, so we required some more powerful 

logic, such as first-order logic. 

• First-Order logic: 

• First-order logic is another way of knowledge representation in artificial intelligence. It is an 

extension to propositional logic. 

• FOL is sufficiently expressive to represent the natural language statements in a concise way. 

• First-order logic is also known as Predicate logic or First-order predicate logic. First-order 

logic is a powerful language that develops information about the objects in a more easy way and 

can also express the relationship between those objects. 

• First-order logic (like natural language) does not only assume that the world contains facts like 

propositional logic but also assumes the following things in the world: 

• Objects: A, B, people, numbers, colors, wars, theories, squares, pits, wumpus, ...... 

• Relations: It can be unary relation such as: red, round, is adjacent, or n-any relation such 

as: the sister of, brother of, has color, comes between 

• Function: Father of, best friend, third inning of, end of, ...... 

• As a natural language, first-order logic also has two main parts: 

• Syntax  

First-order logic statements can be divided into two parts: 

• Subject: Subject is the main part of the statement. 

• Predicate: A predicate can be defined as a relation, which binds two atoms together in a 

statement. 

• Consider the statement: "x is an integer.", it consists of two parts, the first part x is the subject of 

the statement and second part "is an integer," is known as a predicate. 
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Quantifiers in First-order logic: 

A quantifier is a language element which generates quantification, and quantification specifies the 

quantity of specimen in the universe of discourse. 

These are the symbols that permit to determine or identify the range and scope of the variable in the 

logical expression. There are two types of quantifier: 

Universal Quantifier, (for all, everyone, everything)  

Existential quantifier, (for some, at least one).  

Universal Quantifier: 

• Universal quantifier is a symbol of logical representation, which specifies that the statement within its 

range is true for everything or every instance of a particular thing. 

The Universal quantifier is represented by a symbol ∀, which resembles an inverted A. 

• f x is a variable, then ∀x is read as: 

• For all x  

• For each x  

• For every x.  

• Example: 

• All man drink coffee.  

• ∀x man(x) → drink (x, coffee).  
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it will be read as: There are all x where x is a man who drink coffee. 

Existential Quantifier: 

Existential quantifiers are the type of quantifiers, which express that the statement within its scope is true 

for at least one instance of something. 

It is denoted by the logical operator ∃, which resembles as inverted E. When it is used with a predicate 

variable then it is called as an existential quantifier. 

If x is a variable, then existential quantifier will be ∃x or ∃(x). And it will be read as:  

There exists a 'x.'  

For some 'x.'  

For at least one 'x.'  

Example: 
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Some boys are intelligent 

 

∃x: boys(x) ∧ intelligent(x)  

It will be read as: There are some x where x is a boy who is intelligent.  

 

• Some Examples of FOL using quantifier: 

• 1. All birds fly. 

In this question the predicate is "fly(bird)." 

And since there are all birds who fly so it will be represented as follows. 

              ∀x bird(x) →fly(x). 

• 2. Every man respects his parent. 

In this question, the predicate is "respect(x, y)," where x=man, and y= parent. 

Since there is every man so will use ∀, and it will be represented as follows: 

              ∀x man(x) → respects (x, parent). 

• 3. Some boys play cricket. 

In this question, the predicate is "play(x, y)," where x= boys, and y= game. Since there are some boys so 

we will use ∃, and it will be represented as: 

              ∃x boys(x) → play(x, cricket). 
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• 4. Not all students like both Mathematics and Science. 

In this question, the predicate is "like(x, y)," where x= student, and y= subject. 

Since there are not all students, so we will use ∀ with negation, so following representation for 

this: 

              ¬∀ (x) [ student(x) → like(x, Mathematics) ∧ like(x, Science)].  

• First Order Inductive Learner (FOIL) 

• In machine learning, first-order inductive learner (FOIL) is a rule-based learning algorithm. It 

is a natural extension of SEQUENTIAL-COVERING and LEARN-ONE-RULE algorithms.  

• Inductive Learning: 

• Inductive learning analyzing and understanding the evidence and then using it to determine the 

outcome. It is based on Inductive Logic. 
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Induction as inverted deduction: 

A different approach to inductive logic programming is based on the simple observation that 

induction is just the inverse of deduction. 

 

 

INVERTING RESOLUTION :A general method for automated deduction is the resolution rule 

introduced by Robinson (1965). The resolution rule is a sound and complete rule for deductive 

inference in first-order logic. 
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REINFORCEMENT LEARNING 

Reinforcement learning addresses the question of how an autonomous agent that senses and acts in 

its environment can learn to choose optimal actions to achieve its goals. In general, a reinforcement 

learning agent is able to perceive and interpret its environment, take actions and learn through trial 

and error. 
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INTRODUCTION 

 

 Consider building a learning robot. The robot, or agent, has a set of sensors to observe the 

state of its environment, and a set of actions it can perform to alter this state. 

 Its task is to learn a control strategy, or policy, for choosing actions that achieve its goals. 

 The goals of the agent can be defined by a reward function that assigns a numerical value to 

each distinct action the agent may take from each distinct state. 

 This reward function may be built into the robot, or known only to an external teacher who 

provides the reward value for each action performed by the robot. 

 The task of the robot is to perform sequences of actions, observe their consequences, and 

learn a control policy. 

 The control policy is one that, from any initial state, chooses actions that maximize the reward 

accumulated over time by the agent. 

 

Example: 

 A mobile robot may have sensors such as a camera and sonars, and actions such as "move 

forward" and "turn." 

 The robot may have a goal of docking onto its battery charger whenever its battery level is low. 

 The goal of docking to the battery charger can be captured by assigning a positive reward 

(Eg., +100) to state-action transitions that immediately result in a connection to the charger  
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the difference table between RL and Supervised learning is given below: 

Reinforcement Learning Supervised Learning(ACTIVE LEARNING) 

RL works by interacting with the environment. Supervised learning works on the existing dataset. 

The RL algorithm works like the human brain works 

when making some decisions. 

Supervised Learning works as when a human learns things in 

the supervision of a guide. 

There is no labeled dataset is present The labeled dataset is present. 

No previous training is provided to the learning agent. Training is provided to the algorithm so that it can predict the 

output. 

RL helps to take decisions sequentially. In Supervised learning, decisions are made when input is 

given. 

 

Types of Reinforcement: There are two types of Reinforcement:  

  

1. Positive –  

Positive Reinforcement is defined as when an event, occurs due to a particular behavior, increases 

the strength and the frequency of the behavior. In other words, it has a positive effect on behavior.  

2. Negative –  

Negative Reinforcement is defined as strengthening of behavior because a negative condition 

is stopped or avoided.  

 

Various Practical applications of Reinforcement Learning –  

  

 RL can be used in robotics for industrial automation. 

 RL can be used in machine learning and data processing 

 RL can be used to create training systems that provide custom instruction and materials according 

to the requirement of students. 
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1. Robotics: 

a. RL is used in Robot navigation, Robo-soccer, walking, juggling, etc. 

 Control: 

 . RL can be used for adaptive control such as Factory processes, admission control in 

telecommunication, and Helicopter pilot is an example of reinforcement learning. 

 Game Playing: 

 . RL can be used in Game playing such as tic-tac-toe, chess, etc. 

 Chemistry: 

 . RL can be used for optimizing the chemical reactions. 

 Business: 
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 . RL is now used for business strategy planning. 

 Manufacturing: 

 . In various automobile manufacturing companies, the robots use deep reinforcement learning to pick 

goods and put them in some containers. 

 Finance Sector: 

 . The RL is currently used in the finance sector for evaluating trading strategies. 

Terms used in Reinforcement Learning 

o Agent(): An entity that can perceive/explore the environment and act upon it. 

o Environment(): A situation in which an agent is present or surrounded by. In RL, we assume 

the stochastic environment, which means it is random in nature. 

o Action(): Actions are the moves taken by an agent within the environment. 

o State(): State is a situation returned by the environment after each action taken by the agent. 

o Reward(): A feedback returned to the agent from the environment to evaluate the action of the 

agent. 

o Policy(): Policy is a strategy applied by the agent for the next action based on the current state. 

o Value(): It is expected long-term retuned with the discount factor and opposite to the short-term 

reward. 

o Q-value(): It is mostly similar to the value, but it takes one additional parameter as a current 

action (a). 

From the above discussion, we can say that Reinforcement Learning is one of the most interesting and 

useful parts of Machine learning. In RL, the agent explores the environment by exploring it without any 

human intervention. It is the main learning algorithm that is used in Artificial Intelligence. But there are 

some cases where it should not be used, such as if you have enough data to solve the problem, then other 

ML algorithms can be used more efficiently. The main issue with the RL algorithm is that some of the 

parameters may affect the speed of the learning, such as delayed feedback. 

Q-learning OR Quality learning: 

is a model-free reinforcement learning algorithm to learn the value of an action in a particular state. 

... "Q" refers to the function that the algorithm computes – the expected rewards for an action taken in 

a given state 



 
 

Faculty Name : Mrs Swapna                                                                                        Subject Name :ML 

 

What is q-learning? 

Q-learning is an off policy reinforcement learning algorithm that seeks to find the best action to take 

given the current state. It’s considered off-policy because the q-learning function learns from actions 

that are outside the current policy, like taking random actions, and therefore a policy isn’t needed. 

More specifically, q-learning seeks to learn a policy that maximizes the total reward. 

What’s ‘Q’? 

The ‘q’ in q-learning stands for quality. Quality in this case represents how useful a given action is in 

gaining some future reward. 

Create a q-table 

When q-learning is performed we create what’s called a q-table or matrix that follows the shape 

of [state, action] and we initialize our values to zero. We then update and store our q-values after 

an episode.  

Q-learning and making updates 

The next step is simply for the agent to interact with the environment and make updates to the state 

action pairs in our q-table Q[state, action]. 

Taking Action: Explore or Exploit 

An agent interacts with the environment in 1 of 2 ways. The first is to use the q-table as a reference 

and view all possible actions for a given state. The agent then selects the action based on the max 

value of those actions. This is known as exploiting since we use the information we have available 

to us to make a decision. 

The second way to take action is to act randomly. This is called exploring. Instead of selecting 

actions based on the max future reward we select an action at random. Acting randomly is 

important because it allows the agent to explore and discover new states that otherwise may not be 

selected during the exploitation process. 
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Q-Values or Action-Values: Q-values are defined for states and actions. Q(S,A) is an estimation of 

how good is it to take the action A at the state S. This estimation of Q(S,A)  will be iteratively computed 

using the TD- Update rule  

Rewards and Episodes: An agent over the course of its lifetime starts from a start state, makes a 

number of transitions from its current state to a next state based on its choice of action and also the 

environment the agent is interacting in. At every step of transition, the agent from a state takes an action, 

observes a reward from the environment, and then transits to another state. If at any point of time the 

agent ends up in one of the terminating states that means there are no further transition possible. This is 

said to be the completion of an episode. 

 

Temporal Difference or TD-Update: 

The Temporal Difference or TD-Update rule can be represented as follows 

 

This update rule to estimate the value of Q is applied at every time step of the agents interaction with the 

environment. The terms used are explained below. : 

 S: Current State of the agent. 

 A: Current Action Picked according to some policy. 

S‟ : Next State where the agent ends up. 

A‟ : Next best action to be picked using current Q-value estimation, i.e. pick the action with the 

maximum Q-value in the next state. 

R : Current Reward observed from the environment in Response of current action. 

GAMMA=(>0 and <=1) : Discounting Factor for Future Rewards. Future rewards are less valuable than 

current rewards so they must be discounted. Since Q-value is an estimation of expected rewards from a 

state, discounting rule applies here as well. 

ALPHA : Step length taken to update the estimation of Q(S, A). 
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This is one of the form of Learning method in which the agent moves to one state and other state …and 

predicts the reward expected 

It is a supervised learning process in which the training signal for a prediction is a future 

prediction. TD algorithms are often used in reinforcement learning to predict a measure of the total 

amount of reward expected over the future. 

TD Learning focuses on predicting a variable's future value in a sequence of states. Temporal difference 

learning was a major breakthrough in solving the problem of reward prediction. You could say that iIt 

employs a mathematical trick that allows it to replace complicated reasoning with a simple learning 

procedure that can be used to generate the very same results.  

The trick is that rather than attempting to calculate the total future reward, temporal difference learning 

just attempts to predict the combination of immediate reward and its own reward prediction at the next 

moment in time. Now when the next moment comes and brings fresh information with it, the new 

prediction is compared with the expected prediction. If these two predictions are different from each 

other, the TD algorithm will calculate how different the predictions are from each other and make use of 

this temporal difference to adjust the old prediction toward the new prediction.  
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The temporal difference algorithm always aims to bring the expected prediction and the new prediction 

together, thus matching expectations with reality and gradually increasing the accuracy of the entire 

chain of prediction. 

Temporal Difference Learning aims to predict a combination of the immediate reward and its own 

reward prediction at the next moment in time.  

In TD Learning, the training signal for a prediction is a future prediction. temporal difference methods 

tend to adjust predictions to match later, more accurate, predictions for the future, much before the final 

outcome is clear and know. This is essentially a type of bootstrapping. 

For a action to take given a particular state. The distribution π(a∣s) is used for a stochastic policy and 

a mapping function π:S→A is used for a deterministic policy(fixed policy or rule  ) and non 

deterministic (customized policy  with time bound)  where S is the set of possible states and A is the set 

of possible actions. 

 

 Dynamic Programming 

Dynamic programming algorithms solve a category of problems called planning problems. Herein given 

the complete model and specifications of the environment , we can successfully find an optimal policy 

for the agent to follow. It contains two main steps: 

1. Break the problem into subproblems and solve it 

2. Solutions to subproblems are cached or stored for reuse to find overall optimal 

solution to the problem at hand 

• Dynamic programming is a method for solving complex problems by breaking them down into 

sub-problems. The solutions to the sub-problems are combined to solve overall problem.  

 

MDP is used in Dynamic programming to solve complex task 
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UNIT 5 

Analytical Learning-1 

Inductive learning methods such as neural network and decision tree learning require a certain number of training 

examples to achieve a given level of accuracy. 

Analytical learning uses prior knowledge and deductive reasoning to augment the information provided by the 

training examples. This chapter considers an analytical learning method called explanation-based learning (EBL) 

In explanation-based learning, prior knowledge is used to analyze, or explain, how each observed training example 

satisfies the target concept. 

This explanation is then used to distinguish the relevant features of the training example from the irrelevant features 

Explanation-based learning has been successfully applied to learning search control rules for a variety of planning 

and scheduling tasks. 

Inductive Learning methods: that is, methods that generalize from observed training examples by identifying 

features that empirically distinguish positive from negative training examples. 

Decision tree learning, neural network learning, inductive logic programming, and genetic algorithms are all 

examples of inductive methods that operate in this fashion. The key practical limit on these inductive learners is that 

they perform poorly when insufficient data is available. 

Explanation-based learning is one such approach. It uses prior knowledge to analyze, or explain, each training 

example in order to infer which example features are relevant to the target function and which are irrelevant. These 

explanations enable it to generalize more accurately than inductive systems that rely on the data. 

Explanation based learning uses prior knowledge to reduce the complexity of the hypothesis space to be searched, 

thereby reducing sample complexity and improving generalization accuracy of the learner it is supported with 

evidence called domain theory(it is refers to the evidence that supports the prior data ) . 

EXAMPLE OF EXPLANATION: Chess Game 



 
 

Faculty Name : Mrs Swapna                                                                                        Subject Name :ML 

 
  

 

Inductive and Analytical Learning Problems 
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Let us introduce in detail a second example of an analytical learning problem--one that we will use for illustration 

throughout this chapter. Consider an instance space X in which each instance is a pair of physical objects. Each of 

the two physical objects in the instance is described by the predicates Color, Volume, Owner, Material, Type, and 

Density, and the relationship between the two objects is described by the predicate On. 

Given this instance space, the task is to learn the target concept "pairs of physical objects, such that one can be 

stacked safely on the other," denoted by the predicate SafeToStack(x,y). Learning this target concept might be 

useful, for example, to a robot system that has the task of storing various physical objects within a limited 

workspace. The full definition of this analytical learning task is given in 

Table 11.1. 
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Horn clauses express a subset of statements of first-order logic.  

Horn clause supports atleast one positive and negative literal representation 

A Horn Clause is a clause with at most one positive literal, it is thus either: A single positive literal, which is 

regarded as a fact, One or more negative literals, with no positive literal.  
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ANALYZE THE EXPLANATION 
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Learning With Perfect Domain Theories: PROLOG-EBG-PROGRAM LOGIC 

This section presents an algorithm called PROLOG-EBG (Kedar-Cabelli and McCarty 1987) that is representative 

of several explanation-based learning algorithms. 

PROLOG-EBG is a sequential covering algorithm. Prolog stands for programming in logic. it is a logic 

programming language for artificial intelligence. An artificial intelligence developed in Prolog will examine the 

link between a fact, a true statement, and a rule, a conditional statement, in order to come up with a question, or end 

objective. 

PROLOG-EBG is guaranteed to output a hypothesis (set of rules) that is itself correct and that covers the observed 

positive training examples. For any set of training examples, the hypothesis output by PROLOG-EBG constitutes a 

set of logically sufficient conditions for the target concept, according to the domain theory. 

A domain theory is said to be correct if each of its assertions is a truthful statement about the world. 

A domain theory is said to be complete with respect to a given target concept and instance space, if the domain 

theory covers every positive example in the instance space. 
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PROLOGEBG computes the most general rule that can be justified by the explanation, by computing the weakest 

preimage of the explanation 

 

 

PROLOG-EBG computes the weakest preimage of the target concept with respect to the explanation, using a 

general procedure called regression (Waldinger 1977). The regression procedure operates on a domain theory 

represented by an arbitrary set of Horn clauses.  

It works iteratively backward through the explanation, first computing the weakest preimage of the target concept 

with respect to the final proof step in the explanation, then computing the weakest preimage of the resulting 

expressions with respect to the preceding step, and so on.  

The procedure terminates when it has iterated over all steps :in the explanation, yielding the weakest precondition 

of the target concept with respect to the literals at the leaf nodes of the explanation 
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In prolog, We declare some facts. These facts constitute the Knowledge Base of the system. We can query against 

the Knowledge Base. We get output as affirmative if our query is already in the knowledge Base or it is implied 

by Knowledge Base, otherwise we get output as negative. So, Knowledge Base can be considered similar to 

database, against which we can query. Prolog facts are expressed in definite pattern. Facts contain entities and 

their relation. Entities are written within the parenthesis separated by comma (, ).  Their relation is expressed at 

the start and outside the parenthesis. Every fact/rule ends with a dot (.). So, a typical prolog fact goes as follows :  

Format : relation(entity1, entity2, ....k'th entity). 

 

Example : 

friends(raju, mahesh). 

singer(sonu). 

odd_number(5). 

 

Explanation : 

These facts can be interpreted as : 
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raju and mahesh are friends. 

sonu is a singer. 

5 is an odd number. 

 

Key Features of Prolog used in AI: 
1. Unification : The basic idea is, can the given terms be made to represent the same structure. 

2. Backtracking : When a task fails, prolog traces backwards and tries to satisfy previous task. 

3. Recursion : Recursion is the basis for any search in program. 

 

Running queries : 
 

A typical prolog query can be asked as : 

       Query 1 : ?- singer(sonu). 

       Output : Yes. 

 

Explanation : As our knowledge base contains  

the above fact, so output was 'Yes', otherwise  

it would have been 'No'. 

 

Query 2 : ?- odd_number(7). 

Output : No. 

 

Explanation : As our knowledge base does not  

contain the above fact, so output was 'No'. 
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Thus, in its pure form EBL involves reformulating the domain theory to produce general rules that classify 

examples in a single inference step.  

This kind of knowledge reformulation is sometimes referred to as knowledge compilation, indicating that the 

transformation is an efficiency improving one 

 

 

 

 

 

EXPLANATION-BASED LEARNING OF SEARCH CONTROL KNOWLEDGE 

 

PRODIGY and SOAR demonstrate that explanation-based learning methods can be successfully applied to acquire 

search control knowledge in a variety of problem domains. 

 

Prodigy means-ends planning strategy. 

 

The PRODIGY architecture was initially conceived by Jaime Carbonell and Steven Minton, as an Artificial 

Intelligence (AI) system to test and develop ideas on the role of machine learning in planning and problem solving.  

In general, learning in problem solving seemed meaningless without measurable performance improvements.  

Thus, PRODIGY was created to be a testbed for the systematic investigation of the loop between learning and 

performance in planning systems.  

As a result, PRODIGY consists of a core general- purpose planner and several learning modules that refine both the 

planning domain knowledge and the control knowledge to guide the search process effectively 

A planning problem is defined by 

(1) a set of available objects of each  type, 

(2) an initial state  ,  and 
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(3) a goal statement . 

The Algorithm 

Table 4 shows the basic procedure to learn quality-enhancing control knowledge, in the case that a 

human expert provides a better plan. Steps 2, 3 and 4 correspond to the interactive plan checking 

module, that asks the expert for a better solution and checks for its correctness. Step 6 constructs a 

problem solving trace from the expert solution and obtains decision points where control knowledge is 

needed, which in turn become learning opportunities. Step 8 corresponds to the actual learning phase. It 

compares the plan trees obtained from the problem solving traces in Step 7, explains why one solution 

was better than the other, and builds new control knowledge. These steps are described now in detail. 
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1. Run PRODIGY with the current set of control rules and obtain a solution

. 

2. Show to the expert. 

Expert provides new solution  possibly using as a guide. 

3. Test . If it solves the problem, continue. Else go back to step 2. 

4. Apply the plan quality evaluation function to . 

If it is better than , continue. Else go back to step 2. 

5. Compute the partial order for identifying the goal dependencies between 

plan steps. 

6. Construct a problem solving trace corresponding to a solution that satisfies

. 

This determines the set of decision points in the problem solving trace where 

control knowledge is missing. 

7. Build the plan trees   and , corresponding respectively to the search trees for and

. 

8. Compare and explaining why is better than , and build control rules. 

 

Table 4: Top level procedure to learn quality-enhancing control knowledge. 

 

A second example of a general problem-solving architecture that incorporates a form of 

explanation-based learning is the SOAR system (Laird et al. 1986; Newel1 1990). SOAR 

supports a broad variety of problem-solving strategies that subsumes PRODIGY'S means-

ends planning strategy. 

 Like PRODIGY, however, SOAR learns by explaining situations in which its current 

search strategy leads to inefficiencies.  

SOAR has been applied in a great number of problem domains and has also been proposed 

as a psychologically plausible model of human learning processes (Newel1 1990).  

SOAR (security orchestration, automation and response) is a stack of compatible software 

programs that enables an organization to collect data about security threats and respond 
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to security events without human assistance. The goal of using a SOAR platform is to improve 

the efficiency of physical and digital security operations. 

What is SOAR? 

SOAR platforms have three main components: security orchestration, security automation and security response. 

 

 

 

 

https://www.techtarget.com/whatis/definition/security-event-security-incident
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Benefits of SOAR 

SOAR platforms offer many benefits for enterprise security operations (SecOps) teams, 

including the following: 

 Faster incident detection and reaction times. The volume and velocity of security threats 

and events are constantly increasing. SOAR's improved data context, combined with 

automation, can bring lower mean time to detect (MTTD) and mean time to respond (MTTR). 

By detecting and responding to threats more quickly, their impact can be lessened. 

 Better threat context. By integrating more data from a wider array of tools and systems, 

SOAR platforms can offer more context, better analysis and up-to-date threat information. 

 Simplified management. SOAR platforms consolidate various security systems' dashboards 

into a single interface. This helps SecOps and other teams by centralizing information and data 

handling, simplifying management and saving time. 

 Scalability. Scaling time-consuming manual processes can be a drain on employees and even 

impossible to keep up with as security event volume grows. SOAR's orchestration, automation 

and workflows can meet scalability demands more easily. 

 Boosting analysts' productivity. Automating lower-level threats augments SecOps and 

security operations center (SOC) teams' responsibilities, enabling them to prioritize tasks more 

effectively and respond to threats that require human intervention more quickly. 

 

 

 

 

 

 

 

 

 

 

https://www.techtarget.com/searchsecurity/definition/SecOps
https://www.techtarget.com/searchitoperations/definition/mean-time-to-detect-MTTD
https://www.techtarget.com/searchsecurity/definition/Security-Operations-Center-SOC
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Analytical Learning-2- 
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Motivation for combining Inductive and Analytical approaches which address following  

 specific properties  

1. Given no domain theory, it should learn at least as effectively as purely inductive methods.  

2. Given a perfect domain theory, it should learn at least as effectively as purely analytical methods.  

3. Given an imperfect domain theory and imperfect training data, it should combine the two to out 

perform either purely inductive or purely analytical methods.  

4. It should accommodate an unknown level of error in the training data.  
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5. It should accommodate an unknown level of error in the domain theory 
INDUCTIVE-ANALYTICAL APPROACHES TO LEARNING 

The Learning Problem specified as  

To summarize, the learning problem considered in this chapter is  

Given:  

 A set of training examples D, possibly containing errors  

 A domain theory B, possibly containing errors  

A space of candidate hypotheses H  

Determine:  

A hypothesis that best fits the training examples and domain theory 

 

To address this learning problem we develop a hypothesis space search combining both 

inductive and analytical approaches 

we explore three different methods for using prior knowledge to alter the search performed by purely 

inductive methods. 

1. USE PRIOR KNOWLEDGE TO DERIVE AN INITIAL HYPOTHESIS FROM WHICH TO BEGIN THE SEARCH 

2. USE PRIOR KNOWLEDGE TO ALTER THE OBJECTIVE OF THE HYPOTHESIS SPACE SEARCH. 

3. USING PRIOR KNOWLEDGE TO AUGMENT SEARCH STEPS 

 

1. Use prior knowledge to derive an initial hypothesis from which to begin the search 

In this approach the domain theory B is used to construct an initial hypothesis ho that is consistent with 

B. A standard inductive method is then applied, starting with the initial hypothesis ho. 

This approach is used by the KBANN (Knowledge-Based Artificial Neural Network) algorithm to learn 

artificial neural networks.  

In KBANN an initial network is first constructed so that for every possible instance, the classification 

assigned by the network is identical to that assigned by the domain theory.  
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The BACKPROPAGATION algorithm is then employed to adjust the weights of this initial network as 

needed to fit the training examples. It is easy to see the motivation for this technique: if the domain 

theory is correct, the initial hypothesis will correctly classify all the training examples and there will be 

no need to revise it. 

 However, if the initial hypothesis is found to imperfectly classify the training examples, then it will be 

refined inductively to improve its fit to the training examples. 

The KBANN Algorithm 

The KBANN algorithm exemplifies the initialize-the-hypothesis approach to using domain theories. 

The input and output of KBANN are as follows: 
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An Illustrative Example 
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Remarks To summarize, KBANN analytically creates a network equivalent to the given domain theory, 

then inductively refines this initial hypothesis to better fit the training data.  

In doing so, it modifies the network weights using backpropgation  as needed to overcome 

inconsistencies between the domain theory and observed data. 

 

Limitations of KBANN include the fact that it can accommodate only propositional domain theories  

It is also possible for KBANN to be misled when given highly inaccurate domain theories, so that its 

generalization accuracy can deteriorate below the level of BACKPROPAGATION 

 

 

 

2.USING PRIOR KNOWLEDGE TO ALTER THE SEARCH OBJECTIVE 
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In this approach, the goal criterion G is modified to require that the output hypothesis fits the domain 

theory as well as the training examples.  

For example, the EBNN(EXPLANATION BASED NEURAL NETWORK) system described below learns 

neural networks in this way. Whereas inductive learning of neural networks performs gradient descent 

search to minimize the squared error of the network over the training data, EBNN performs gradient 

descent to optimize a different criterion. This modified criterion includes an additional term that 

measures the error of the learned network relative to the domain theory. 

The TANGENTPROP Algorithm TANGENTPROP (Simard et al. 1992) accommodates domain knowledge 

expressed as derivatives of the target function with respect to transformations of its inputs. Consider a 

learning task involving an instance space X and target function f. 

The TANGENTPROP algorithm assumes various training derivatives of the target function are also 

provided. For example, if each instance xi is described by a single real value, then each training example 

may be of the form (xi, f (xi), q lx, ). Here lx, denotes the derivative of the target function f with respect 

to x, evaluated at the point x = xi.  

To develop an intuition for the benefits of providing training derivatives as well as training values during 

learning, consider the simple learning task depicted in Figure   

The task is to learn the target function f shown in the leftmost plot of the figure, based on the three 

training examples shown: (xl, f (xl)), (x2, f (x2)), and (xg, f (xg)). 

 Given these three training examples, the BACKPROPAGATION algorithm can be expected to hypothesize 

a smooth function, such as the function g depicted in the middle plot of the figure. The rightmost plot 

shows the effect of 

providing training derivatives, or slopes, as additional information for each training example (e.g., (XI, f 

(XI), I,, )). By fitting both the training values f (xi) and these training derivatives PI,, the learner has a 

better chance to correctly generalize from the sparse training data.  

To summarize, the impact of including the training derivatives is to override the usual syntactic inductive 

bias of BACKPROPAGATION that favors a smooth interpolation between points, replacing it by explicit 

input information about required derivatives. The resulting hypothesis h shown in the rightmost plot of 

the figure provides a much more accurate estimate of the true target function f. 
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Each transformation must be of the form sj(a, x) where aj is a continuous parameter, where sj is 

differentiable, and where sj(O, x) = x (e.g., for rotation of zero degrees the transformation is the identity 

function). For each such transformation, sj(a, x),  

In the Figure one f(X) are the hypothesis and x1 , x2 ,x3 are the instances and these instances fit to 

proper hypothesis shown in first figure and in second fig we can see the instances  classified and 

machine learns to fit to proper hypothesis by  doing necessary modification by using   

TANGEPROP considers the squared error between the specified training derivative and the actual 

derivative of the learned neural network. The modified error function is 

 

where p is a constant provided by the user to determine the relative importance of fitting training values 

versus fitting training derivatives.  

Notice the first term in this definition of E is the original squared error of the network versus training 

values, and the second term is the squared error in the network versus training derivatives. 

In the third figure we can see the instances are classified properly and maintaining accuracy. 

An Illustrative Example 
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Remarks To summarize, TANGENTPROP uses prior knowledge in the form of desired derivatives of the 

target function with respect to transformations of its inputs.  

It combines this prior knowledge with observed training data, by minimizing an objective function that 

measures both the network's error with respect to the training example values (fitting the data) and its 

error with respect to the desired derivatives (fitting the prior knowledge). 
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It is interesting to compare the search through hypothesis space (weight space) performed by 

TANGENTPROP, KBANN, and BACKPROPAGATION.  

TANGENTPROP incorporates prior knowledge to influence the hypothesis search by altering the 

objective function to be minimized by gradient descent 

TANGENTPROP objective will be a subset of those satisfying the weaker BACKPROPAGATION objective. 

The difference between these two sets of final hypotheses is the set of incorrect hypotheses that will be 

considered by BACKPROPAGATION, but ruled out by TANGENTPROP due to its prior knowledge. 

The EBNN Algorithm 

The EBNN (Explanation-Based Neural Network learning) algorithm (Mitchell and Thrun 1993a; Thrun 

1996) builds on the TANGENTPROP algorithm in two significant ways.  

First, instead of relying on the user to provide training derivatives, EBNN computes training derivatives 

itself for each observed training example. These training derivatives are calculated by explaining each 

training example in terms of a given domain theory, then extracting training derivatives from this 

explanation.  
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Second, EBNN addresses the issue of how to weight the relative importance of the inductive and 

analytical components of learning . 

The inputs to EBNN include (1) a set of training examples of the form (xi, f (xi)) with no training 

derivatives provided, and (2) a domain theory analogous to that used in explanation-based learning and 

in KBANN, but represented by a set of previously trained neural networks The output of EBNN is a new 

neural network that approximates the target function f. This learned network is trained to fit both the 

training examples (xi, f (xi)) and training derivatives of f extracted from the domain theory. Fitting the 

training examples (xi, f (xi)) constitutes the inductive component of learning, whereas fitting the training 

derivatives extracted from the domain theory provides the analytical component. 
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Remarks To summarize, the EBNN algorithm uses a domain theory expressed as a set of previously 

learned neural networks, together with a set of training examples, to train its output hypothesis (the 

target network).  

For each training example EBNN uses its domain theory to explain the example, then extracts training 

derivatives from this explanation.  

For each attribute of the instance, a training derivative is computed that describes how the target 

function value is influenced by a small change to this attribute value, according to the domain theory. 

USING PRIOR KNOWLEDGE TO AUGMENT SEARCH STEPS 

The two previous sections examined two different roles for prior knowledge in learning: initializing the 

learner's hypothesis and altering the objective function that guides search through the hypothesis 

space.  

In this section we consider a third way of using prior knowledge to alter the hypothesis space search: 

using it to alter the set of operators that define legal steps in the search through the hypothesis space. 

This approach is followed by systems such as FOCL 

The First Order Combined Learner (FOCL) Algorithm is an extension of the purely inductive, FOIL 
Algorithm. It uses domain theory to further improve the search for the best-rule and greatly improves 
accuracy.  
First Order Inductive Learner (FOIL) 
In machine learning, (FOIL) is a rule-based learning algorithm. It is a natural extension of SEQUENTIAL-
COVERING and LEARN-ONE-RULE algorithms 

 

FOCL also tends to perform an iterative process of learning a set of best-rules to cover the 

training examples and then remove all the training examples covered by that best rule. (using a 

sequential covering algorithm) 

However, what makes the FOCL algorithm more powerful is the approach that it adapts while 

searching for that best-rule.  
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At each point in it moves from  general-to-specific search, FOCL expands its current hypothesis h using 

the following two operators 

1. For each operational literal that is not part of h, create a specialization of h by adding this single literal 

to the precondition s. This is also the method used by FOIL to generate candidate successors. The solid 

arrows in Figure 12.8 denote this type of specialization 

2. Create an operational, logically sufficient condition for the target concept according to the domain 

theory. Add this set of literals to the current preconditions of h.  

Finally, prune the preconditions of h by removing any literals that are unnecessary according to the 

training data. 

 

 

 

 


